Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hydrodynamics of thermal active matter (2405.11023v2)

Published 17 May 2024 in cond-mat.soft, cond-mat.stat-mech, physics.bio-ph, and hep-th

Abstract: Active matter concerns many-body systems comprised of living or self-driven agents that collectively exhibit macroscopic phenomena distinct from conventional passive matter. Using Schwinger-Keldysh effective field theory, we develop a novel hydrodynamic framework for thermal active matter that accounts for energy balance, local temperature variations, and the ensuing stochastic effects. By modelling active matter as a driven open system, we show that the source of active contributions to hydrodynamics, violations of fluctuation-dissipation theorems, and detailed balance is rooted in the breaking of time-translation symmetry due to the presence of fuel consumption and an external environmental bath. In addition, our framework allows for non-equilibrium steady states that produce entropy, with a well-defined notion of steady-state temperature. We use our framework of active hydrodynamics to develop effective field theory actions for active superfluids and active nematics that offer a first-principle derivation of various active transport coefficients and feature activity-induced phase transitions. We also show how to incorporate temperature, energy and noise in fluctuating hydrodynamics for active matter. Our work suggests a broader perspective on active matter that can leave an imprint across scales.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. E. Schrodinger, What is life?: the physical aspect of the living cell (The Macmillan company, 1946).
  2. J. Toner, Y. Tu, and S. Ramaswamy, Hydrodynamics and phases of flocks, Annals of Physics 318, 170 (2005).
  3. J. Joanny and J. Prost, Active gels as a description of the actin-myosin cytoskeleton, HFSP Journal 3, 94 (2009), pMID: 19794818, https://doi.org/10.2976/1.3054712 .
  4. R. Alert, J.-F. Joanny, and J. Casademunt, Universal scaling of active nematic turbulence, Nature Physics 16, 682–688 (2020).
  5. R. Alert, J. Casademunt, and J.-F. Joanny, Active turbulence, Annual Review of Condensed Matter Physics 13, 143 (2022).
  6. R. Aditi Simha and S. Ramaswamy, Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles, Phys. Rev. Lett. 89, 058101 (2002).
  7. S. Ramaswamy and M. Rao, Active-filament hydrodynamics: instabilities, boundary conditions and rheology, New Journal of Physics 9, 423 (2007).
  8. F. Jülicher, J. Prost, and J. Toner, Broken living layers: Dislocations in active smectic liquid crystals, Phys. Rev. E 106, 054607 (2022), arXiv:2207.04562 [cond-mat.soft] .
  9. D. Yamada, T. Hondou, and M. Sano, Coherent dynamics of an asymmetric particle in a vertically vibrating bed, Phys. Rev. E 67, 040301 (2003).
  10. L. Pitaevskii and E. Lifshitz, Physical Kinetics: Volume 10, v. 10 (Elsevier Science, 2012).
  11. J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38, 1113 (1999), arXiv:hep-th/9711200 .
  12. G. Policastro, D. T. Son, and A. O. Starinets, The Shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87, 081601 (2001), arXiv:hep-th/0104066 .
  13. F. Julicher, S. W. Grill, and G. Salbreux, Hydrodynamic theory of active matter, Reports on Progress in Physics 81, 076601 (2018).
  14. M. J. Landry, Active actions: effective field theory for active nematics, arXiv e-prints , arXiv:2309.15142 (2023), arXiv:2309.15142 [cond-mat.soft] .
  15. A. C. Callan-Jones and F. Jülicher, Hydrodynamics of active permeating gels, New Journal of Physics 13, 093027 (2011).
  16. P. Matus, R. Lier, and P. Surówka, Molecular modelling of odd viscoelastic fluids (2024), arXiv:2310.15251 [cond-mat.soft] .
  17. L. Onsager, Reciprocal Relations in Irreversible Processes. I., Physical Review 37, 405 (1931a).
  18. L. Onsager, Reciprocal Relations in Irreversible Processes. II., Physical Review 38, 2265 (1931b).
  19. L. Landau, E. Lifshitz, and L. Pitaevski\̆text{i}, Statistical Physics, Course of theoretical physics No. pt. 2 (Pergamon Press, 1980).
  20. E. Wang and U. W. Heinz, A Generalized fluctuation dissipation theorem for nonlinear response functions, Phys. Rev. D 66, 025008 (2002), arXiv:hep-th/9809016 .
  21. A. Amoretti, D. K. Brattan, and L. Martinoia, Thermodynamic constraints on polar active matter hydrodynamics, preprint  (2024), arXiv:2405.02283 [cond-mat.stat-mech] .
  22. E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Reports on Progress in Physics 72, 096601 (2009).
  23. H. Berg, E. coli in Motion, Biological and Medical Physics, Biomedical Engineering (Springer, 2004).
  24. J. Elgeti, R. G. Winkler, and G. Gompper, Physics of microswimmers—single particle motion and collective behavior: a review, Reports on Progress in Physics 78, 056601 (2015).
  25. L. V. Delacrétaz, B. Goutéraux, and V. Ziogas, Damping of Pseudo-Goldstone Fields, Phys. Rev. Lett. 128, 141601 (2022), arXiv:2111.13459 [hep-th] .
  26. J. Armas and E. Have, Ideal fracton superfluids, SciPost Phys. 16, 039 (2024), arXiv:2304.09596 [hep-th] .
  27. S. Grozdanov and J. Polonyi, Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev. D 91, 105031 (2015), arXiv:1305.3670 [hep-th] .
  28. M. Harder, P. Kovtun, and A. Ritz, On thermal fluctuations and the generating functional in relativistic hydrodynamics, JHEP 07 (07), 025, arXiv:1502.03076 [hep-th] .
  29. M. Crossley, P. Glorioso, and H. Liu, Effective field theory of dissipative fluids, JHEP 09 (09), 095, arXiv:1511.03646 [hep-th] .
  30. F. M. Haehl, R. Loganayagam, and M. Rangamani, Topological sigma models & dissipative hydrodynamics, JHEP 04 (04), 039, arXiv:1511.07809 [hep-th] .
  31. K. Jensen, N. Pinzani-Fokeeva, and A. Yarom, Dissipative hydrodynamics in superspace, JHEP 09 (09), 127, arXiv:1701.07436 [hep-th] .
  32. H. Liu and P. Glorioso, Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics, PoS TASI2017, 008 (2018), arXiv:1805.09331 [hep-th] .
  33. G. E. Crooks, Nonequilibrium measurements of free energy differences for microscopically reversible markovian systems, Journal of Statistical Physics 90, 1481 (1998).
  34. G. E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E 60, 2721 (1999).
  35. J. Prost, J.-F. Joanny, and J. M. R. Parrondo, Generalized fluctuation-dissipation theorem for steady-state systems, Phys. Rev. Lett. 103, 090601 (2009).
  36. L. Landau and E. Lifshitz, Fluid Mechanics, Teoreticheskaia fizika (Pergamon Press, 1959).
  37. P. Glorioso and H. Liu, The second law of thermodynamics from symmetry and unitarity, preprint  (2016), arXiv:1612.07705 [hep-th] .
  38. R. C. Tolman, Duration of Molecules in Upper Quantum States, Phys. Rev. 23, 693 (1924).
  39. R. Tolman, The Principles of Statistical Mechanics, Dover Books on Physics (Dover Publications, 1979).
  40. S. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover Books on Physics (Dover Publications, 2013).
  41. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, 1987).
  42. X. Chen-Lin, L. V. Delacretaz, and S. A. Hartnoll, Theory of diffusive fluctuations, Phys. Rev. Lett. 122, 091602 (2019), arXiv:1811.12540 [hep-th] .
  43. A. Jain and P. Kovtun, Late Time Correlations in Hydrodynamics: Beyond Constitutive Relations, Phys. Rev. Lett. 128, 071601 (2022), arXiv:2009.01356 [hep-th] .
  44. R. Großmann, F. Peruani, and M. Bär, Mesoscale pattern formation of self-propelled rods with velocity reversal, Phys. Rev. E 94, 050602 (2016).
  45. A. Jain, Effective field theory for non-relativistic hydrodynamics, JHEP 10 (10), 208, arXiv:2008.03994 [hep-th] .
  46. P. de Gennes and J. Prost, The Physics of Liquid Crystals, International Series of Monographs on Physics (Clarendon Press, 1993).
  47. P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics, edited by P. M. Chaikin and T. C. Lubensky (1995).
  48. S. Mishra, R. Aditi Simha, and S. Ramaswamy, A dynamic renormalization group study of active nematics, Journal of Statistical Mechanics: Theory and Experiment 2010, 02003 (2010), arXiv:0912.2283 [cond-mat.soft] .
  49. A. Beris and B. Edwards, Thermodynamics of Flowing Systems: with Internal Microstructure, Oxford Engineering Science Series (Oxford University Press, 1994).
  50. A. Lucas and K. C. Fong, Hydrodynamics of electrons in graphene, J. Phys. Condens. Matter 30, 053001 (2018), arXiv:1710.08425 [cond-mat.str-el] .
  51. J. Armas and A. Jain, Effective field theory for hydrodynamics without boosts, SciPost Phys. 11, 054 (2021), arXiv:2010.15782 [hep-th] .
  52. I. Novak, J. Sonner, and B. Withers, Hydrodynamics without boosts, JHEP 07 (07), 165, arXiv:1911.02578 [hep-th] .
  53. E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée. (première partie), Annales Sci. Ecole Norm. Sup. 40, 325 (1923).
  54. E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée. (première partie) (Suite)., Annales Sci. Ecole Norm. Sup. 41, 1 (1924).
  55. K. Jensen, Aspects of hot Galilean field theory, JHEP 04 (04), 123, arXiv:1411.7024 [hep-th] .
  56. K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime, SciPost Phys. 5, 011 (2018), arXiv:1408.6855 [hep-th] .
  57. E. A. Bergshoeff, J. Hartong, and J. Rosseel, Torsional Newton–Cartan geometry and the Schrodinger algebra, Class. Quant. Grav. 32, 135017 (2015), arXiv:1409.5555 [hep-th] .
  58. M. L. Bellac, Thermal Field Theory, edited by M. L. Bellac, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2011).
  59. C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78, 2690 (1997).
  60. C. Jarzynski, Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach, Phys. Rev. E 56, 5018 (1997), arXiv:cond-mat/9707325 [cond-mat.stat-mech] .
  61. H. Stark and T. C. Lubensky, Poisson-bracket approach to the dynamics of nematic liquid crystals, Phys. Rev. E 67, 061709 (2003).
Citations (1)

Summary

We haven't generated a summary for this paper yet.