Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Triggered Distributed Model Predictive Control with Synchronization Parameters Interaction (2405.11006v1)

Published 17 May 2024 in eess.SY, cs.SY, and nlin.AO

Abstract: This paper investigates an aperiodic distributed model predictive control approach for multi-agent systems (MASs) in which parameterized synchronization constraints is considered and an innovative self-triggered criterion is constructed. Different from existing coordination methodology, the proposed strategy achieves the cooperation of agents through the synchronization of one-dimensional parameters related to the control inputs. At each asynchronous sampling instant, each agent exchanges the one-dimensional synchronization parameters, solves the optimal control problem (OCP) and then determines the open-loop phase. The incorporation of the selftriggered scheme and the synchronization parameter constraints relieves the computational and communication usage. Sufficient conditions guaranteeing the recursive feasibility of the OCP and the stability of the closed-loop system are proven. Simulation results illustrate the validity of the proposed control algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. H. Yang, T. Li, Y. Long, C. P. Chen, and Y. Xiao, “Distributed virtual inertia implementation of multiple electric springs based on model predictive control in dc microgrids,” IEEE Transactions on Industrial Electronics, vol. 69, no. 12, pp. 13439–13450, 2021.
  2. X. Yin and X. Zhao, “Deep neural learning based distributed predictive control for offshore wind farm using high-fidelity les data,” IEEE Transactions on Industrial Electronics, vol. 68, no. 4, pp. 3251–3261, 2020.
  3. P. D. Christofides, R. Scattolini, D. M. de la Pena, and J. Liu, “Distributed model predictive control: A tutorial review and future research directions,” Computers & Chemical Engineering, vol. 51, pp. 21–41, 2013.
  4. X. Zhou, T. Yang, Y. Zou, S. Li, and H. Fang, “Multiple subformulae cooperative control for multiagent systems under conflicting signal temporal logic tasks,” IEEE Transactions on Industrial Electronics, vol. 70, no. 9, pp. 9357–9367, 2022.
  5. J. Wang and S. Li, “Distributed model predictive control for consensus of multi-agent systems with connectivity maintenance,” IEEE Transactions on Circuits and Systems I: Regular Papers, 2023.
  6. Q. Yuan and X. Li, “Distributed model predictive formation control for a group of uavs with spatial kinematics and unidirectional data transmissions,” IEEE Transactions on Network Science and Engineering, 2023.
  7. L. Hao, R. Wang, C. Shen, and Y. Shi, “Trajectory tracking control of autonomous underwater vehicles using improved tube-based model predictive control approach,” IEEE Transactions on Industrial Informatics, 2023.
  8. B. Hou, S. Li, and Y. Zheng, “Distributed model predictive control for reconfigurable systems with network connection,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 2, pp. 907–918, 2021.
  9. Y. Zheng, S. Li, R. Wan, Z. Wu, and Y. Zhang, “Distributed model predictive control for reconfigurable systems based on lyapunov analysis,” Journal of Process Control, vol. 123, pp. 1–11, 2023.
  10. Y. Yang, Y. Zou, and S. Li, “Economic model predictive control of enhanced operation performance for industrial hierarchical systems,” IEEE Transactions on Industrial Electronics, vol. 69, no. 6, pp. 6080–6089, 2021.
  11. X. Mi, Y. Zou, S. Li, and H. R. Karimi, “Self-triggered dmpc design for cooperative multiagent systems,” IEEE Transactions on Industrial Electronics, vol. 67, no. 1, pp. 512–520, 2019.
  12. J. Chen, H. Wei, H. Zhang, and Y. Shi, “Asynchronous self-triggered stochastic distributed mpc for cooperative vehicle platooning over vehicular ad-hoc networks,” IEEE Transactions on Vehicular Technology, 2023.
  13. H. Wei, K. Zhang, and Y. Shi, “Self-triggered min–max dmpc for asynchronous multiagent systems with communication delays,” IEEE Transactions on Industrial Informatics, vol. 18, no. 10, pp. 6809–6817, 2021.
  14. T. Wang, Y. Kang, P. Li, Y. Zhao, and H. Tang, “Rolling self-triggered distributed mpc for dynamically coupled nonlinear systems,” Automatica, vol. 160, p. 111444, 2024.
  15. R. Skjetne, T. I. Fossen, and P. V. Kokotović, “Robust output maneuvering for a class of nonlinear systems,” Automatica, vol. 40, no. 3, pp. 373–383, 2004.
  16. Q. Zhang, L. Lapierre, and X. Xiang, “Distributed control of coordinated path tracking for networked nonholonomic mobile vehicles,” IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 472–484, 2012.
  17. D. Qin, Z. Jin, A. Liu, W.-a. Zhang, and L. Yu, “Event-triggered distributed predictive cooperation control for multi-agent systems subject to bounded disturbances,” Automatica, vol. 157, p. 111230, 2023.
  18. D. Qin, Z. Jin, A. Liu, W.-A. Zhang, and L. Yu, “Asynchronous event-triggered distributed predictive control for multi-agent systems with parameterized synchronization constraints,” IEEE Transactions on Automatic Control, 2023.
  19. Z. Sun, L. Dai, K. Liu, V. Dimarogonas, Dimos, and Y. Xia, “Robust self-triggered mpc with adaptive prediction horizon for perturbed nonlinear systems,” IEEE Transactions of Automatic Control, vol. 11, no. 64, pp. 4780–4787, 2019.
  20. H. Xie, L. Dai, Y. Luo, and Y. Xia, “Robust mpc for disturbed nonlinear discrete-time systems via a composite self-triggered scheme,” Automatica, vol. 127, p. 109499, 2021.
  21. R. Paulavičius and J. Žilinskas, “Analysis of different norms and corresponding lipschitz constants for global optimization,” Technological and Economic Development of Economy, vol. 12, no. 4, pp. 301–306, 2006.
  22. Z. Jiang and Y. Wang, “Input-to-state stability for discrete-time nonlinear systems,” Automatica, vol. 37, no. 6, pp. 857–869, 2001.
  23. H. Michalska and D. Q. Mayne, “Robust receding horizon control of constrained nonlinear systems,” IEEE Transactions on Automatic Control, vol. 38, no. 11, pp. 1623–1633, 1993.
  24. D. Qin, A. Liu, D. Zhang, and H. Ni, “Formation control of mobile robot systems incorporating primal-dual neural network and distributed predictive approach,” Journal of the Franklin Institute, vol. 357, no. 17, pp. 12454–12472, 2020.
  25. H. K. Khalil and J. W. Grizzle, Nonlinear Systems. Prentice hall, 2002.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com