Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Recovery of Sparse Graph Signals from Graph Filter Outputs (2405.10649v2)

Published 17 May 2024 in eess.SP, cs.SY, eess.SY, and math.OC

Abstract: This paper investigates the recovery of a node-domain sparse graph signal from the output of a graph filter. This problem, which is often referred to as the identification of the source of a diffused sparse graph signal, is seminal in the field of graph signal processing (GSP). Sparse graph signals can be used in the modeling of a variety of real-world applications in networks, such as social, biological, and power systems, and enable various GSP tasks, such as graph signal reconstruction, blind deconvolution, and sampling. In this paper, we assume double sparsity of both the graph signal and the graph topology, as well as a low-order graph filter. We propose three algorithms to reconstruct the support set of the input sparse graph signal from the graph filter output samples, leveraging these assumptions and the generalized information criterion (GIC). First, we describe the graph multiple GIC (GM-GIC) method, which is based on partitioning the dictionary elements (graph filter matrix columns) that capture information on the signal into smaller subsets. Then, the local GICs are computed for each subset and aggregated to make a global decision. Second, inspired by the well-known branch and bound (BNB) approach, we develop the graph-based branch and bound GIC (graph-BNB-GIC), and incorporate a new tractable heuristic bound tailored to the graph and graph filter characteristics. In addition, we propose the graph-based first order correction (GFOC) method, which improves existing sparse recovery methods by iteratively examining potential improvements to the GIC cost function by replacing elements from the estimated support set with elements from their one-hop neighborhood. In addition, we investigate the application of our graph-based sparse recovery methods in blind deconvolution scenarios where the graph filter is unknown.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. G. Morgenstern and T. Routtenberg, “Sparse graph signal recovery by the graph-based multiple generalized information criterion (GM-GIC),” in International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2023, pp. 491–495.
  2. A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst, “Graph signal processing: Overview, challenges, and applications,” Proc. IEEE, vol. 106, no. 5, pp. 808–828, 2018.
  3. D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.
  4. A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656, 2013.
  5. ——, “Discrete signal processing on graphs: Frequency analysis,” IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3042–3054, 2014.
  6. A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph processes and spectral estimation,” IEEE Trans. Signal Process., vol. 65, no. 22, pp. 5911–5926, 2017.
  7. E. Drayer and T. Routtenberg, “Detection of false data injection attacks in smart grids based on graph signal processing,” IEEE Syst. J., vol. 14, no. 2, pp. 1886–1896, 2019.
  8. Y. Tanaka, Y. C. Eldar, A. Ortega, and G. Cheung, “Sampling signals on graphs: From theory to applications,” IEEE Signal Process. Mag., vol. 37, no. 6, pp. 14–30, 2020.
  9. A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph signals with successive local aggregations,” IEEE Trans. Signal Process., vol. 64, no. 7, pp. 1832–1843, 2015.
  10. S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovačević, “Signal recovery on graphs: Variation minimization,” IEEE Trans. Signal Process., vol. 63, no. 17, pp. 4609–4624, 2015.
  11. P. Di Lorenzo, P. Banelli, E. Isufi, S. Barbarossa, and G. Leus, “Adaptive graph signal processing: Algorithms and optimal sampling strategies,” IEEE Trans. Signal Process., vol. 66, no. 13, pp. 3584–3598, 2018.
  12. G. Sagi and T. Routtenberg, “MAP estimation of graph signals,” IEEE Trans. Signal Process., vol. 72, pp. 463–479, 2024.
  13. A. Kroizer, T. Routtenberg, and Y. C. Eldar, “Bayesian estimation of graph signals,” IEEE Trans. Signal Process., vol. 70, pp. 2207–2223, 2022.
  14. A. Amar and T. Routtenberg, “Widely-linear mmse estimation of complex-valued graph signals,” IEEE Trans. Signal Process., vol. 71, pp. 1770–1785, 2023.
  15. L. Dabush and T. Routtenberg, “Verifying the smoothness of graph signals: A graph signal processing approach,” arXiv preprint: 2307.03210, 2023.
  16. A. Venkitaraman, S. Chatterjee, and P. Händel, “Predicting graph signals using kernel regression where the input signal is agnostic to a graph,” IEEE Trans. Signal Inf. Process. Netw., vol. 5, no. 4, pp. 698–710, 2019.
  17. E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving average graph filtering,” IEEE Trans. Signal Process., vol. 65, no. 2, pp. 274–288, 2016.
  18. M. Coutino, E. Isufi, and G. Leus, “Advances in distributed graph filtering,” IEEE Trans. Signal Process., vol. 67, no. 9, pp. 2320–2333, 2019.
  19. S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001.
  20. J. A. Tropp, “Greed is good: algorithmic results for sparse approximation,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242, Oct. 2004.
  21. D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse overcomplete representations in the presence of noise,” IEEE Trans. Inf. Theory, vol. 52, no. 1, pp. 6–18, 2005.
  22. R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society Series B: Statistical Methodology, vol. 58, no. 1, pp. 267–288, 1996.
  23. B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” The Annals of Statistics, vol. 32, no. 2, pp. 407 – 499, 2004.
  24. E. Candes and T. Tao, “The dantzig selector: Statistical estimation when p is much larger than n,” The Annals of Statistics, vol. 35, no. 6, pp. 2313 – 2351, 2007.
  25. D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proceedings of the National Academy of Sciences, vol. 106, no. 45, pp. 18 914–18 919, 2009.
  26. D. P. Wipf and B. D. Rao, “Sparse bayesian learning for basis selection,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153–2164, 2004.
  27. I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from limited data using focuss: A re-weighted minimum norm algorithm,” IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600–616, 1997.
  28. R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compressive sensing,” in International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2008, pp. 3869–3872.
  29. S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415, 1993.
  30. T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal recovery with noise,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4680–4688, 2011.
  31. W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230–2249, 2009.
  32. T. Blumensath and M. E. Davies, “Gradient pursuits,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2370–2382, 2008.
  33. J. Haupt, W. U. Bajwa, M. Rabbat, and R. Nowak, “Compressed sensing for networked data,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 92–101, 2008.
  34. W. Xu, E. Mallada, and A. Tang, “Compressive sensing over graphs,” in 2011 Proceedings IEEE INFOCOM.   IEEE, 2011, pp. 2087–2095.
  35. M. Cheraghchi, A. Karbasi, S. Mohajer, and V. Saligrama, “Graph-constrained group testing,” IEEE Trans. Inf. Theory, vol. 58, no. 1, pp. 248–262, 2012.
  36. P. C. Pinto, P. Thiran, and M. Vetterli, “Locating the source of diffusion in large-scale networks,” Physical review letters, vol. 109, no. 6, p. 068702, 2012.
  37. E. Sefer and C. Kingsford, “Diffusion archeology for diffusion progression history reconstruction,” Knowledge and information systems, vol. 49, pp. 403–427, 2016.
  38. P. Zhang, J. He, G. Long, G. Huang, and C. Zhang, “Towards anomalous diffusion sources detection in a large network,” ACM Transactions on Internet Technology (TOIT), vol. 16, no. 1, pp. 1–24, 2016.
  39. R. Pena, X. Bresson, and P. Vandergheynst, “Source localization on graphs via ℓℓ\ellroman_ℓ1 recovery and spectral graph theory,” in Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), 2016, pp. 1–5.
  40. A. Sridhar, T. Routtenberg, and H. V. Poor, “Quickest inference of susceptible-infected cascades in sparse networks,” in International Symposium on Information Theory (ISIT), 2023, pp. 102–107.
  41. A. Anis, A. Gadde, and A. Ortega, “Towards a sampling theorem for signals on arbitrary graphs,” in International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 3864–3868.
  42. S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevic, “Discrete signal processing on graphs: Sampling theory,” IEEE Trans. Signal Process., vol. 63, no. 24, pp. 6510–6523, 2015.
  43. M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs: Uncertainty principle and sampling,” IEEE Trans. Signal Process., vol. 64, no. 18, pp. 4845–4860, 2016.
  44. D. Ramírez, A. G. Marques, and S. Segarra, “Graph-signal reconstruction and blind deconvolution for structured inputs,” Signal Process., vol. 188, p. 108180, 2021.
  45. S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, “Blind identification of graph filters,” IEEE Trans. Signal Process., vol. 65, no. 5, pp. 1146–1159, 2016.
  46. S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design and applications to distributed linear network operators,” IEEE Trans. Signal Process., vol. 65, no. 15, pp. 4117–4131, 2017.
  47. ——, “Distributed implementation of linear network operators using graph filters,” in Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2015, pp. 1406–1413.
  48. J. Mei and J. M. Moura, “Signal processing on graphs: Estimating the structure of a graph,” in International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 5495–5499.
  49. H. Rainer and U. Krause, “Opinion dynamics and bounded confidence: Models, analysis and simulation,” Journal of Artificial Societies and Social Simulation, vol. 5, no. 3, 2002.
  50. D. Shah and T. Zaman, “Rumors in a network: Who’s the culprit?” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5163–5181, 2011.
  51. M. E. Newman, “Spread of epidemic disease on networks,” Physical review E, vol. 66, no. 1, p. 016128, 2002.
  52. D. Shah and T. Zaman, “Detecting sources of computer viruses in networks: theory and experiment,” in Proceedings of the ACM SIGMETRICS international conference on Measurement and modeling of computer systems, 2010, pp. 203–214.
  53. G. Morgenstern and T. Routtenberg, “Structural-constrained methods for the identification of unobservable false data injection attacks in power systems,” IEEE Access, vol. 10, pp. 94 169–94 185, 2022.
  54. G. Morgenstern, J. Kim, J. Anderson, G. Zussman, and T. Routtenberg, “Protection against graph-based false data injection attacks on power systems,” IEEE Trans. Control Netw. Syst., pp. 1–12, 2024.
  55. S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, “Reconstruction of graph signals through percolation from seeding nodes,” IEEE Trans. Signal Process., vol. 64, no. 16, pp. 4363–4378, 2016.
  56. Y. Zhu, F. J. I. Garcia, A. G. Marques, and S. Segarra, “Estimating network processes via blind identification of multiple graph filters,” IEEE Trans. Signal Process., vol. 68, pp. 3049–3063, 2020.
  57. C. Ye, R. Shafipour, and G. Mateos, “Blind identification of invertible graph filters with multiple sparse inputs,” in European Signal Processing Conference (EUSIPCO), 2018, pp. 121–125.
  58. S. Rey-Escudero, F. J. I. Garcia, C. Cabrera, and A. G. Marques, “Sampling and reconstruction of diffused sparse graph signals from successive local aggregations,” IEEE Signal Process. Lett., vol. 26, no. 8, pp. 1142–1146, 2019.
  59. S. Boyd and J. Mattingley, “Branch and bound methods,” Notes for EE364b, Stanford University, vol. 2006, p. 07, 2007.
  60. E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Operations research, vol. 14, no. 4, pp. 699–719, 1966.
  61. Z. Wang, A. Scaglione, and R. J. Thomas, “Generating statistically correct random topologies for testing smart grid communication and control networks,” IEEE Trans. Smart Grid, vol. 1, no. 1, pp. 28–39, 2010.
  62. H. Yanai, K. Takeuchi, and Y. Takane, “Projection matrices,” in Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition.   Springer, 2011, pp. 25–54.
  63. P. Babu and P. Stoica, “Multiple-hypothesis testing rules for high-dimensional model selection and sparse-parameter estimation,” Signal Process., vol. 213, p. 109189, 2023.
  64. P. Stoica and Y. Selen, “Model-order selection: a review of information criterion rules,” IEEE Signal Process. Mag., vol. 21, no. 4, pp. 36–47, 2004.
  65. R. Dionne and M. Florian, “Exact and approximate algorithms for optimal network design,” Networks, vol. 9, no. 1, pp. 37–59, 1979.
  66. R. S. Solanki, J. K. Gorti, and F. Southworth, “Using decomposition in large-scale highway network design with a quasi-optimization heuristic,” Transportation Research Part B: Methodological, vol. 32, no. 2, pp. 127–140, 1998.
  67. B. Bollobás, “Random graphs,” in Modern Graph Theory.   New York, NY, USA: Springer, 1998, pp. 215–252.
  68. M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Information Processing and Management, vol. 45, pp. 427–437, 07 2009.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com