Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Carrier Aggregation Enabled MIMO-OFDM Integrated Sensing and Communication (2405.10606v2)

Published 17 May 2024 in eess.SP

Abstract: In the evolution towards the forthcoming era of sixth-generation (6G) mobile communication systems characterized by ubiquitous intelligence, integrated sensing and communication (ISAC) is in a phase of burgeoning development. However, the capabilities of communication and sensing within single frequency band fall short of meeting the escalating demands. To this end, this paper introduces a carrier aggregation (CA)-enabled multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) ISAC system fusing the sensing data on high and low-frequency bands by symbol-level fusion for ultimate communication experience and high-accuracy sensing. The challenges in sensing signal processing introduced by CA include the initial phase misalignment of the echo signals on high and low-frequency bands due to attenuation and radar cross section, and the fusion of the sensing data on high and low-frequency bands with different physical-layer parameters. To this end, the sensing signal processing is decomposed into two stages. In the first stage, the problem of initial phase misalignment of the echo signals on high and low-frequency bands is solved by the angle compensation, spatial filtering and cyclic cross-correlation operations. In the second stage, this paper realizes symbol-level fusion of the sensing data on high and low-frequency bands through sensing vector rearrangement and cyclic prefix adjustment operations, thereby obtaining high-precision sensing performance. Then, the closed-form communication mutual information (MI) and sensing Cram\'er-Rao lower bound (CRLB) for the proposed ISAC system are derived to explore the theoretical performance bound with CA. Simulation results validate the feasibility and superiority of the proposed ISAC system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. M. Deng, Z. Yao, X. Li, H. Wang, A. Nallanathan, and Z. Zhang, “Dynamic multi-objective AWPSO in DT-assisted UAV cooperative task assignment,” IEEE J. Sel. Areas Commun., Aug 2023.
  2. Z. Wang and V. W. Wong, “Deep Learning for ISAC-Enabled End-to-End Predictive Beamforming in Vehicular Networks,” in IEEE Int. Conf. Commun.   IEEE, Oct 2023, pp. 5713–5718.
  3. K. Meng, Q. Wu, S. Ma, W. Chen, K. Wang, and J. Li, “Throughput Maximization for UAV-Enabled Integrated Periodic Sensing and Communication,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 671–687, Aug 2023.
  4. Z. Du, F. Liu, W. Yuan, C. Masouros, Z. Zhang, S. Xia, and G. Caire, “Integrated Sensing and Communications for V2I Networks: Dynamic Predictive Beamforming for Extended Vehicle Targets,” IEEE Trans. Wireless Commun., vol. 22, no. 6, pp. 3612–3627, Nov 2023.
  5. Z. Wei, H. Liu, Z. Feng, H. Wu, F. Liu, and Q. Zhang, “Deep Cooperation in ISAC System: Resource, Node and Infrastructure Perspectives,” arXiv preprint arXiv:2403.02565, 2024.
  6. K. I. Pedersen, F. Frederiksen, C. Rosa, H. Nguyen, L. G. U. Garcia, and Y. Wang, “Carrier aggregation for LTE-advanced: functionality and performance aspects,” IEEE Commun. Mag., vol. 49, no. 6, pp. 89–95, Jun 2011.
  7. Z. Wei, H. Liu, X. Yang, W. Jiang, H. Wu, X. Li, and Z. Feng, “Carrier Aggregation Enabled Integrated Sensing and Communication Signal Design and Processing,” IEEE Trans. Veh. Tech., vol. 73, no. 3, pp. 3580–3596, Mar 2024.
  8. C. Pfeffer, R. Feger, and A. Stelzer, “A stepped-carrier 77-GHz OFDM MIMO radar system with 4 GHz bandwidth,” in IEEE EuRAD Conf.   IEEE, Dec 2015, pp. 97–100.
  9. B. Schweizer, C. Knill, D. Schindler, and C. Waldschmidt, “Stepped-carrier OFDM-radar processing scheme to retrieve high-resolution range-velocity profile at low sampling rate,” IEEE Trans. Microwave Theory Tech., vol. 66, no. 3, pp. 1610–1618, Sep 2017.
  10. Y. Huang, D. Huang, Q. Luo, S. Ma, S. Hu, and Y. Gao, “NC-OFDM RadCom system for electromagnetic spectrum interference,” in IEEE Int. Conf. Commun.Tech.   IEEE, 2017, pp. 877–881.
  11. H. Liu, Z. Wei, F. Li, Y. Lin, H. Qu, H. Wu, and Z. Feng, “Integrated Sensing and Communication Signal Processing Based On Compressed Sensing Over Unlicensed Spectrum Bands,” IEEE Trans. Cognit. Commun. Networking, Apr 2024.
  12. K. M. Cuomo, “A bandwidth extrapolation technique for improved range resolution of coherent radar data. revision 1,” Massachusetts Inst of Tech Lexington Lincoln Lab, Tech. Rep., Dec 1992.
  13. K. Suwa and M. Iwamoto, “Bandwidth extrapolation technique for polarimetric radar data,” IEICE Trans. Commun., vol. 87, no. 2, pp. 326–334, Feb 2004.
  14. M. Hua, Q. Wu, W. Chen, and A. Jamalipour, “Integrated sensing and communication: Joint pilot and transmission design,” arXiv preprint arXiv:2211.12891, 2022.
  15. F. Liu, C. Masouros, A. Li, H. Sun, and L. Hanzo, “MU-MIMO Communications With MIMO Radar: From Co-Existence to Joint Transmission,” IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2755–2770, Apr 2018.
  16. X. Hu, C. Masouros, F. Liu, and R. Nissel, “Low-PAPR DFRC MIMO-OFDM Waveform Design for Integrated Sensing and Communications,” in IEEE Int. Conf. Commun., Aug 2022, pp. 1599–1604.
  17. Z. Xiao, R. Liu, M. Li, and Q. Liu, “A Novel Joint Angle-Range-Velocity Estimation Method for MIMO-OFDM ISAC Systems,” arXiv preprint arXiv:2308.03387, 2023.
  18. P. Aggarwal and V. A. Bohara, “Analytical Characterization of Dual-Band Multi-User MIMO-OFDM System With Nonlinear Transmitter Constraints,” IEEE Trans. Commun., vol. 66, no. 10, pp. 4536–4549, May 2018.
  19. Y. Guo, Y. Liu, Q. Wu, X. Li, and Q. Shi, “Joint Beamforming and Power Allocation for RIS Aided Full-Duplex Integrated Sensing and Uplink Communication System,” IEEE Trans. Wireless Commun, pp. 1–1, Oct 2023.
  20. Z. Xu and A. Petropulu, “A bandwidth efficient dual-function radar communication system based on a MIMO radar using OFDM waveforms,” IEEE Trans. Signal Process., vol. 71, pp. 401–416, Feb 2023.
  21. R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, Mar 1986.
  22. Z. Wei, R. Xu, Z. Feng, H. Wu, N. Zhang, W. Jiang, and X. Yang, “Symbol-level integrated sensing and communication enabled multiple base stations cooperative sensing,” IEEE Trans. Veh. Tech., pp. 1–15, Aug 2023.
  23. M. Braun, C. Sturm, A. Niethammer, and F. K. Jondral, “Parametrization of joint OFDM-based radar and communication systems for vehicular applications,” in 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Apr 2009, pp. 3020–3024.
  24. Z. Wei, F. Li, H. Liu, X. Chen, H. Wu, K. Han, and Z. Feng, “Multiple Reference Signals Collaborative Sensing for Integrated Sensing and Communication System Towards 5G-A and 6G,” arXiv preprint arXiv:2312.02170, 2023.
  25. C. Ouyang, Y. Liu, H. Yang, and N. Al-Dhahir, “Integrated sensing and communications: A mutual information-based framework,” IEEE Commun. Mag., vol. 61, no. 5, pp. 26–32, May 2023.
  26. Z. Wei, J. Piao, X. Yuan, H. Wu, J. A. Zhang, Z. Feng, L. Wang, and P. Zhang, “Waveform Design for MIMO-OFDM Integrated Sensing and Communication System: An Information Theoretical Approach,” IEEE Trans. Commun., vol. 72, no. 1, pp. 496–509, Sep 2024.
  27. H. Hua, T. X. Han, and J. Xu, “MIMO Integrated Sensing and Communication: CRB-Rate Tradeoff,” IEEE Trans. Wireless Commun., vol. 23, no. 4, pp. 2839–2854, Aug 2024.
  28. M. Braun, C. Sturm, A. Niethammer, and F. K. Jondral, “Parametrization of joint ofdm-based radar and communication systems for vehicular applications,” in 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications.   IEEE, Apr 2009, pp. 3020–3024.
  29. 3GPP, “NR; Physical channels and modulation,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.211, vol. 9, 2018.
  30. M. I. Skolnik, “Theoretical accuracy of radar measurements,” IRE Transactions on Aeronautical and Navigational Electronics, no. 4, pp. 123–129, Dec 1960.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com