Corrections to adiabatic behavior for long paths (2405.10294v3)
Abstract: The cost and the error of the adiabatic theorem for preparing the final eigenstate are discussed in terms of path length. Previous studies in terms of the norm of the Hamiltonian and its derivatives with the spectral gap are limited in their ability to describe the cost of adiabatic state preparation for certain physically large systems. We argue that total time is not a good measure for determining the computational difficulty of adiabatic quantum computation by developing a no-go theorem. From the result of time-periodic Hamiltonian cases, we suggest that there are proxies for computational cost which typically grow as path length increases when the error is kept fixed and small and consider possible conjectures on how general the behavior is.
- M. Born and V. Fock, Beweis des adiabatensatzes, Zeitschrift für Physik 51, 165 (1928).
- E. Schrödinger, Quantisierung als Eigenwertproblem, Annalen Phys. 384, 361 (1926).
- W. Heisenberg, Über quantentheoretische umdeutung kinematischer und mechanischer beziehungen., Zeitschrift für Physik 33, 879 (1925).
- D. Aharonov and A. Ta‐Shma, Adiabatic quantum state generation, SIAM Journal on Computing 37, 47 (2007), https://doi.org/10.1137/060648829 .
- A. M. Childs, E. Farhi, and J. Preskill, Robustness of adiabatic quantum computation, Phys. Rev. A 65, 012322 (2002), arXiv:quant-ph/0108048 .
- W. van Dam, M. Mosca, and U. Vazirani, How powerful is adiabatic quantum computation?, in Proceedings 42nd IEEE Symposium on Foundations of Computer Science (2001) pp. 279–287.
- T. Albash and D. A. Lidar, Adiabatic quantum computation, Rev. Mod. Phys. 90, 015002 (2018).
- T. Kato, On the adiabatic theorem of quantum mechanics, Journal of the Physical Society of Japan 5, 435 (1950), https://doi.org/10.1143/JPSJ.5.435 .
- S. Jansen, M.-B. Ruskai, and R. Seiler, Bounds for the adiabatic approximation with applications to quantum computation, Journal of Mathematical Physics 48, 10.1063/1.2798382 (2007), 102111, https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.2798382/16055030/102111_1_online.pdf .
- A. Messiah, Quantum Mechanics Volume II (Elsevier Science B.V., 1961).
- N. Wiebe and N. S. Babcock, Improved error-scaling for adiabatic quantum evolutions, New Journal of Physics 14, 013024 (2012).
- D. Comparat, General conditions for quantum adiabatic evolution, Phys. Rev. A 80, 012106 (2009).
- S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum Algorithms for Quantum Field Theories, Science 336, 1130 (2012), arXiv:1111.3633 [quant-ph] .
- S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum Computation of Scattering in Scalar Quantum Field Theories, Quant. Inf. Comput. 14, 1014 (2014a), arXiv:1112.4833 [hep-th] .
- S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum Algorithms for Fermionic Quantum Field Theories, (2014b), arXiv:1404.7115 [hep-th] .
- J. Liu and Y. Xin, Quantum simulation of quantum field theories as quantum chemistry, JHEP 12, 011, arXiv:2004.13234 [hep-th] .
- Y. Ge, A. Molnár, and J. I. Cirac, Rapid adiabatic preparation of injective projected entangled pair states and gibbs states, Phys. Rev. Lett. 116, 080503 (2016).
- K. Wan and I. H. Kim, Fast digital methods for adiabatic state preparation, (2020), arXiv:2004.04164 [quant-ph] .
- C. Yi, Success of digital adiabatic simulation with large Trotter step, Phys. Rev. A 104, 052603 (2021), arXiv:2107.06404 [quant-ph] .
- H. F. Trotter, On the product of semi-groups of operators, Proceedings of the American Mathematical Society 10, 545 (1959).
- M. Suzuki, Generalized Trotter’s Formula and Systematic Approximants of Exponential Operators and Inner Derivations with Applications to Many Body Problems, Commun. Math. Phys. 51, 183 (1976).
- T. D. Cohen and H. Oh, Efficient vacuum-state preparation for quantum simulation of strongly interacting local quantum field theories, Phys. Rev. A 109, L020402 (2024), arXiv:2310.19229 [hep-lat] .
- A. Luis, Quantum-state preparation and control via the zeno effect, Phys. Rev. A 63, 052112 (2001).
- L. Lin and Y. Tong, Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems, Quantum 4, 361 (2020).
- S. Boixo, E. Knill, and R. Somma, Eigenpath traversal by phase randomization, Quantum Info. Comput. 9, 833–855 (2009).
- S. Boixo and R. D. Somma, Necessary condition for the quantum adiabatic approximation, Phys. Rev. A 81, 032308 (2010).
- S. Boixo, E. Knill, and R. D. Somma, Fast quantum algorithms for traversing paths of eigenstates (2010), arXiv:1005.3034 [quant-ph] .
- H.-T. Chiang, G. Xu, and R. D. Somma, Improved bounds for eigenpath traversal, Phys. Rev. A 89, 012314 (2014).
- L. K. Grover, A fast quantum mechanical algorithm for database search, in Symposium on the Theory of Computing (1996).
- O. Lychkovskiy, A necessary condition for quantum adiabaticity applied to the adiabatic grover search, Journal of Russian Laser Research 39, 552 (2018).
- A. Lenard, Adiabatic invariance to all orders, Annals of Physics 6, 261 (1959).
- L. Garrido and F. Sancho, Degree of approximate validity of the adiabatic invariance in quantum mechanics, Physica 28, 553 (1962).
- L. M. Garrido, Generalized Adiabatic Invariance, Journal of Mathematical Physics 5, 355 (1964).
- G. Nenciu, Adiabatic theorem and spectral concentration, Communications in Mathematical Physics 82, 121 (1981).
- G. Nenciu, Linear adiabatic theory. exponential estimates, Communications in Mathematical Physics 152, 479 (1993).
- G. A. Hagedorn and A. Joye, Elementary exponential error estimates for the adiabatic approximation, Journal of Mathematical Analysis and Applications 267, 235 (2002).
- A. Elgart and G. A. Hagedorn, A note on the switching adiabatic theorem, Journal of Mathematical Physics 53, 102202 (2012), https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.4748968/15598623/102202_1_online.pdf .
- M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. Lond. A 392, 45 (1984).