Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hilbert Functions and Low-Degree Randomness Extractors (2405.10277v1)

Published 16 May 2024 in cs.CC

Abstract: For $S\subseteq \mathbb{F}n$, consider the linear space of restrictions of degree-$d$ polynomials to $S$. The Hilbert function of $S$, denoted $\mathrm{h}_S(d,\mathbb{F})$, is the dimension of this space. We obtain a tight lower bound on the smallest value of the Hilbert function of subsets $S$ of arbitrary finite grids in $\mathbb{F}n$ with a fixed size $|S|$. We achieve this by proving that this value coincides with a combinatorial quantity, namely the smallest number of low Hamming weight points in a down-closed set of size $|S|$. Understanding the smallest values of Hilbert functions is closely related to the study of degree-$d$ closure of sets, a notion introduced by Nie and Wang (Journal of Combinatorial Theory, Series A, 2015). We use bounds on the Hilbert function to obtain a tight bound on the size of degree-$d$ closures of subsets of $\mathbb{F}_qn$, which answers a question posed by Doron, Ta-Shma, and Tell (Computational Complexity, 2022). We use the bounds on the Hilbert function and degree-$d$ closure of sets to prove that a random low-degree polynomial is an extractor for samplable randomness sources. Most notably, we prove the existence of low-degree extractors and dispersers for sources generated by constant-degree polynomials and polynomial-size circuits. Until recently, even the existence of arbitrary deterministic extractors for such sources was not known.

Citations (2)

Summary

We haven't generated a summary for this paper yet.