Quantum State Learning Implies Circuit Lower Bounds (2405.10242v1)
Abstract: We establish connections between state tomography, pseudorandomness, quantum state synthesis, and circuit lower bounds. In particular, let $\mathfrak{C}$ be a family of non-uniform quantum circuits of polynomial size and suppose that there exists an algorithm that, given copies of $|\psi \rangle$, distinguishes whether $|\psi \rangle$ is produced by $\mathfrak{C}$ or is Haar random, promised one of these is the case. For arbitrary fixed constant $c$, we show that if the algorithm uses at most $O(2{nc})$ time and $2{n{0.99}}$ samples then $\mathsf{stateBQE} \not\subset \mathsf{state}\mathfrak{C}$. Here $\mathsf{stateBQE} := \mathsf{stateBQTIME}[2{O(n)}]$ and $\mathsf{state}\mathfrak{C}$ are state synthesis complexity classes as introduced by Rosenthal and Yuen (ITCS 2022), which capture problems with classical inputs but quantum output. Note that efficient tomography implies a similarly efficient distinguishing algorithm against Haar random states, even for nearly exponential-time algorithms. Because every state produced by a polynomial-size circuit can be learned with $2{O(n)}$ samples and time, or $O(n{\omega(1)})$ samples and $2{O(n{\omega(1)})}$ time, we show that even slightly non-trivial quantum state tomography algorithms would lead to new statements about quantum state synthesis. Finally, a slight modification of our proof shows that distinguishing algorithms for quantum states can imply circuit lower bounds for decision problems as well. This help sheds light on why time-efficient tomography algorithms for non-uniform quantum circuit classes has only had limited and partial progress. Our work parallels results by Arunachalam et al. (FOCS 2021) that revealed a similar connection between quantum learning of Boolean functions and circuit lower bounds for classical circuit classes, but modified for the purposes of state tomography and state synthesis.
- Testing k-wise and almost k-wise independence. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’07, page 496–505, New York, NY, USA, 2007. Association for Computing Machinery. doi:10.1145/1250790.1250863.
- Scott Aaronson. Introduction to Quantum Information Science Lecture Notes, May 2022. URL: https://www.scottaaronson.com/qclec.pdf.
- Optimal algorithms for learning quantum phase states, 2022. arXiv:2208.07851.
- Quantum Pseudoentanglement, 2022. arXiv:2211.00747.
- Improved Simulation of Stabilizer Circuits. Physical Review A, 70(5), 2004. doi:10.1103/physreva.70.052328.
- Identifying Stabilizer States, 2008. https://pirsa.org/08080052.
- Efficient Tomography of Non-Interacting Fermion States, 2023. arXiv:2102.10458.
- Quantum learning algorithms imply circuit lower bounds. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 562–573, 2022. doi:10.1109/FOCS52979.2021.00062.
- Quantum Hardness of Learning Shallow Classical Circuits. SIAM Journal on Computing, 50(3):972–1013, 2021. doi:10.1137/20M1344202.
- Stabilization of Quantum Computations by Symmetrization. SIAM Journal on Computing, 26(5):1541–1557, 1997. doi:10.1137/S0097539796302452.
- Focus on quantum tomography. New Journal of Physics, 15(12):125020, 2013. doi:10.1088/1367-2630/15/12/125020.
- Quantum Fingerprinting. Phys. Rev. Lett., 87:167902, Sep 2001. doi:10.1103/PhysRevLett.87.167902.
- Unitary Complexity and the Uhlmann Transformation Problem, 2023. arXiv:2306.13073.
- Quantum Majority Vote. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023), volume 251 of Leibniz International Proceedings in Informatics (LIPIcs), pages 29:1–29:1, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.29, doi:10.4230/LIPIcs.ITCS.2023.29.
- Optimal state estimation for d-dimensional quantum systems. Physics Letters A, 253(5):249–251, 1999. doi:10.1016/S0375-9601(99)00099-7.
- Improved Quantum Data Analysis. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, page 1398–1411. Association for Computing Machinery, 2021. doi:10.1145/3406325.3451109.
- A Fast Parallel Algorithm for Determining All Roots of a Polynomial with Real Roots. SIAM Journal on Computing, 17(6):1081–1092, 1988. doi:10.1137/0217069.
- Allan Borodin. On Relating Time and Space to Size and Depth. SIAM Journal on Computing, 6(4):733–744, 1977. doi:10.1137/0206054.
- Pseudorandom functions and lattices. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, pages 719–737, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
- (Pseudo) Random Quantum States with Binary Phase. In Theory of Cryptography, 2019. doi:10.1007/978-3-030-36030-6_10.
- Quantum Complexity Theory. SIAM Journal on Computing, 26(5):1411–1473, 1997. doi:10.1137/S0097539796300921.
- Efficient unitary designs and pseudorandom unitaries from permutations, 2024. arXiv:2404.16751.
- Quantum Meets the Minimum Circuit Size Problem. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages 47:1–47:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITCS.2022.47.
- When does adaptivity help for quantum state learning? In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 391–404, Los Alamitos, CA, USA, nov 2023. IEEE Computer Society. doi:10.1109/FOCS57990.2023.00029.
- Efficient learning of t𝑡titalic_t-doped stabilizer states with single-copy measurements, 2023. arXiv:2308.07014.
- L. Csanky. Fast parallel matrix inversion algorithms. In 16th Annual Symposium on Foundations of Computer Science (sfcs 1975), pages 11–12, 1975. doi:10.1109/SFCS.1975.14.
- Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A, 80:012304, Jul 2009. doi:10.1103/PhysRevA.80.012304.
- The solovay-kitaev algorithm, 2005. arXiv:quant-ph/0505030.
- Ugo Fano. Description of States in Quantum Mechanics by Density Matrix and Operator Techniques. Reviews of Modern Physics, 29(1):74, 1957. doi:10.1103/RevModPhys.29.74.
- Fast and Robust Quantum State Tomography from Few Basis Measurements. In 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021), volume 197 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:13, 2021. doi:10.4230/LIPIcs.TQC.2021.7.
- Efficient learning algorithms yield circuit lower bounds. Journal of Computer and System Sciences, 75(1):27–36, 2009. Learning Theory 2006. doi:10.1016/j.jcss.2008.07.006.
- Cryptographic distinguishability measures for quantum-mechanical states. IEEE Transactions on Information Theory, 45(4):1216–1227, 1999. doi:10.1109/18.761271.
- Efficient Universal Quantum Circuits. Quantum Information and Computation, 10, 07 2009. doi:10.1007/978-3-642-02882-3_42.
- Quantum Digital Signatures, 2001. arXiv:quant-ph/0105032.
- How To Construct Randolli Functions. In 25th Annual Symposium on Foundations of Computer Science, 1984., pages 464–479, 1984. doi:10.1109/SFCS.1984.715949.
- Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates, 2023. arXiv:2305.13409.
- Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates II: Single-Copy Measurements, 2023. arXiv:2308.07175.
- Improved stabilizer estimation via bell difference sampling, 2023. arXiv:2304.13915.
- Pseudorandomness from subset states, 2023. arXiv:2312.09206.
- Steve Hanneke. The optimal sample complexity of pac learning. J. Mach. Learn. Res., 17(1):1319–1333, jan 2016.
- Bell sampling from quantum circuits, 2023. arXiv:2306.00083v1.
- Exact learning algorithms, betting games, and circuit lower bounds. ACM Trans. Comput. Theory, 5(4), nov 2013. doi:10.1145/2539126.2539130.
- Sample-Optimal Tomography of Quantum States. IEEE Transactions on Information Theory, 63(9):5628–5641, 2017. doi:10.1109/TIT.2017.2719044.
- 4-round luby-rackoff construction is a qprp. In International Conference on the Theory and Application of Cryptology and Information Security, 2019. URL: https://api.semanticscholar.org/CorpusID:147692931.
- Predicting many properties of a quantum system from very few measurements. Nature Physics, 16(10):1050–1057, 2020. doi:10.1038/s41567-020-0932-7.
- Learning shallow quantum circuits, 2024. arXiv:2401.10095.
- Quantum fan-out is powerful. Theory Computing, 1:81–103, 2005. doi:10.4086/toc.2005.v001a005.
- Quantum chosen-ciphertext attacks against feistel ciphers. In Mitsuru Matsui, editor, Topics in Cryptology – CT-RSA 2019, pages 391–411, Cham, 2019. Springer International Publishing.
- Pseudorandom Quantum States. In Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, pages 126–152. Springer, 2018. doi:10.1007/978-3-319-96878-0_5.
- Pseudorandom and pseudoentangled states from subset states, 2024. arXiv:2312.15285.
- Qubit stabilizer states are complex projective 3-designs, 2015. arXiv:1510.02767.
- Constructing Hard Functions Using Learning Algorithms. In 2013 IEEE Conference on Computational Complexity, pages 86–97, 2013. doi:10.1109/CCC.2013.18.
- Quantum Cryptography in Algorithmica. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, page 1589–1602, New York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3564246.3585225.
- William Kretschmer. Quantum Pseudorandomness and Classical Complexity. In 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021), volume 197 of Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1–2:20, 2021. doi:10.4230/LIPIcs.TQC.2021.2.
- Vinayak M. Kumar. Tight Correlation Bounds for Circuits Between AC0 and TC0. In Amnon Ta-Shma, editor, 38th Computational Complexity Conference (CCC 2023), volume 264 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:40, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CCC.2023.18.
- An introduction to computational learning theory. MIT Press, Cambridge, MA, USA, 1994.
- Learning Quantum Circuits of Some T𝑇Titalic_T Gates. IEEE Transactions on Information Theory, 68(6):3951–3964, 2022. doi:10.1109/TIT.2022.3151760.
- Efficient Direct Tomography for Matrix Product States, 2010. arXiv:1002.4632.
- Constant depth circuits, Fourier transform, and learnability. J. ACM, 40(3):607–620, jul 1993. doi:10.1145/174130.174138.
- Learning t-doped stabilizer states, 2023. arXiv:2305.15398v3.
- Quantum pseudorandom scramblers, 2023. arXiv:2309.08941.
- Ashley Montanaro. Learning stabilizer states by Bell sampling, 2017. arXiv:1707.04012.
- Cristopher Moore. Quantum circuits: Fanout, parity, and counting, 1999. arXiv:quant-ph/9903046.
- Quantum Tomography. Advances in Imaging and Electron Physics, 128:205–308, 2003. doi:10.1016/S1076-5670(03)80065-4.
- Simple constructions of linear-depth t-designs and pseudorandom unitaries, 2024. arXiv:2404.12647.
- Sometimes-recurse shuffle. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, pages 311–326, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.
- A Survey of Quantum Property Testing. Number 7 in Graduate Surveys. Theory of Computing Library, 2016. doi:10.4086/toc.gs.2016.007.
- Circuit lower bounds for nondeterministic quasi-polytime from a new easy witness lemma. SIAM Journal on Computing, 49(5):STOC18–300–STOC18–322, 2020. doi:10.1137/18M1195887.
- T. Metger and H. Yuen. stateQIP = statePSPACE. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 1349–1356, Los Alamitos, CA, USA, nov 2023. IEEE Computer Society. doi:10.1109/FOCS57990.2023.00082.
- Quantum Computation and Quantum Information, 2002. doi:10.1017/CBO9780511976667.
- C. Andrew Neff. Specified precision polynomial root isolation is in NC. Journal of Computer and System Sciences, 48(3):429–463, 1994. doi:10.1016/S0022-0000(05)80061-3.
- On the pauli spectrum of qac0, 2024. arXiv:2311.09631.
- Saturation and recurrence of quantum complexity in random local quantum dynamics, 2024. arXiv:2205.09734.
- Conspiracies between learning algorithms, circuit lower bounds, and pseudorandomness. In Proceedings of the 32nd Computational Complexity Conference, CCC ’17, Dagstuhl, DEU, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
- Pseudo-Derandomizing Learning and Approximation. In Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018), volume 116 of Leibniz International Proceedings in Informatics (LIPIcs), pages 55:1–55:19, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.55.
- Efficient Quantum Tomography. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pages 899–912, 2016. doi:10.1145/2897518.2897544.
- Rizwana Rehman and Ilse C. F. Ipsen. La budde’s method for computing characteristic polynomials, 2011. arXiv:1104.3769.
- Gregory Rosenthal. Query and depth upper bounds for quantum unitaries via grover search, 2023. arXiv:2111.07992.
- Gregory Rosenthal. Efficient quantum state synthesis with one query. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2508–2534, 2024. doi:10.1137/1.9781611977912.89.
- Natural proofs. Journal of Computer and System Sciences, 55(1):24–35, 1997. doi:10.1006/jcss.1997.1494.
- The mix-and-cut shuffle: Small-domain encryption secure against n queries. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, pages 392–409, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
- Interactive Proofs for Synthesizing Quantum States and Unitaries. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages 112:1–112:4, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITCS.2022.112.
- Collapse of the Hierarchy of Constant-Depth Exact Quantum Circuits. computational complexity, 25:849–881, 2016. doi:10.1007/s00037-016-0140-0.
- Dominique Unruh. Towards compressed permutation oracles. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023, pages 369–400, Singapore, 2023. Springer Nature Singapore.
- Ewout Van Den Berg. A simple method for sampling random clifford operators. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 54–59, 2021. doi:10.1109/QCE52317.2021.00021.
- Ilya Volkovich. On learning, lower bounds and (un)keeping promises. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming, pages 1027–1038, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.
- Ilya Volkovich. A guide to learning arithmetic circuits. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine Learning Research, pages 1540–1561, Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR. URL: https://proceedings.mlr.press/v49/volkovich16.html.
- John Watrous. Space-Bounded Quantum Complexity. Journal of Computer and System Sciences, 59(2):281–326, 1999. doi:10.1006/jcss.1999.1655.
- John Watrous. Quantum statistical zero-knowledge, 2002. arXiv:quant-ph/0202111.
- John Watrous. On the complexity of simulating space-bounded quantum computations. compational complexity, 12:48–84, June 2003. doi:10.1007/s00037-003-0177-8.
- John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018.
- Efficient Approximation of Diagonal Unitaries over the Clifford+T Basis. Quantum Info. Comput., 16(1–2):87–104, jan 2016. doi:10.26421/QIC16.15-16-8.
- J. H. Wilkinson. The algebraic eigenvalue problem. Oxford University Press, Inc., USA, 1988.
- Ryan Williams. Nonuniform acc circuit lower bounds. J. ACM, 61(1), jan 2014. doi:10.1145/2559903.
- R. Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates. Theory of Computing, 14(17):1–25, 2018. doi:10.4086/toc.2018.v014a017.
- Henry Yuen. An Improved Sample Complexity Lower Bound for (Fidelity) Quantum State Tomography. Quantum, 7:890, January 2023. doi:10.22331/q-2023-01-03-890.
- Mark Zhandry. A note on quantum-secure prps, 2016. arXiv:1611.05564.
- Mark Zhandry. How to Construct Quantum Random Functions. J. ACM, 68(5), aug 2021. doi:10.1145/3450745.
- Learning quantum states and unitaries of bounded gate complexity, 2023. arXiv:2310.19882.