Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Participatory Budgeting based Truthful Budget-Limited Incentive Mechanism for Time-Constrained Tasks in Crowdsensing Systems (2405.10206v1)

Published 16 May 2024 in cs.GT

Abstract: Crowdsensing, also known as participatory sensing, is a method of data collection that involves gathering information from a large number of common people (or individuals), often using mobile devices or other personal technologies. This paper considers the set-up with multiple task requesters and several task executors in a strategic setting. Each task requester has multiple heterogeneous tasks and an estimated budget for the tasks. In our proposed model, the Government has a publicly known fund (or budget) and is limited. Due to limited funds, it may not be possible for the platform to offer the funds to all the available task requesters. For that purpose, in the first tier, the voting by the city dwellers over the task requesters is carried out to decide on the subset of task requesters receiving the Government fund. In the second tier, each task of the task requesters has start and finish times. Based on that, firstly, the tasks are distributed to distinct slots. In each slot, we have multiple task executors for executing the floated tasks. Each task executor reports a cost (private) for completing the floated task(s). Given the above-discussed set-up, the objectives of the second tier are: (1) to schedule each task of the task requesters in the available slots in a non-conflicting manner and (2) to select a set of executors for the available tasks in such a way that the total incentive given to the task executors should be at most the budget for the tasks. For the discussed scenario, a truthful incentive based mechanism is designed that also takes care of budget criteria. Theoretical analysis is done, and it shows that the proposed mechanism is computationally efficient, truthful, budget-feasible, and individually rational. The simulation is carried out, and the efficacy of the designed mechanism is compared with the state-of-the-art mechanisms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. J. Howe, “The rise of crowdsourcing,” Wired Magazine, vol. 14, no. 6, 06 2006. [Online]. Available: http://www.wired.com/wired/archive/14.06/crowds.html
  2. Wikipedia, “https://en.wikipedia.org/wiki/crowdsourcing,” February 2024.
  3. D. Nevo and J. Kotlarsky, “Crowdsourcing as a strategic is sourcing phenomenon: Critical review and insights for future research,” The Journal of Strategic Information Systems, vol. 29, no. 4, p. 101593, 2020, 2020 Review Issue. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0963868720300019
  4. V. K. Singh, S. Mukhopadhyay, F. Xhafa, and P. Krause, “A quality-assuring, combinatorial auction based mechanism for IoT-based crowdsourcing,” in Advances in Edge Computing: Massive Parallel Processing and Applications.   IOS Press, 2020, vol. 35, pp. 148–177. [Online]. Available: 10.3233/APC200006
  5. Y. Jin, M. Carman, Y. Zhu, and Y. Xiang, “A technical survey on statistical modelling and design methods for crowdsourcing quality control,” Artificial Intelligence, vol. 287, p. 103351, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0004370218307343
  6. K. L. M. Ang, J. K. P. Seng, and E. Ngharamike, “Towards crowdsourcing internet of things (crowd-iot): Architectures, security and applications,” Future Internet, MDPI, vol. 14, no. 2, pp. 1–50, 2022. [Online]. Available: https://www.mdpi.com/1999-5903/14/2/49
  7. X. Liu, H. Chen, Y. Liu, W. Wei, H. Xue, and F. Xia, “Multi-task data collection with limited budget in edge-assisted mobile crowdsensing,” IEEE Internet of Things Journal, pp. 1–1, 2024. [Online]. Available: 10.1109/JIOT.2024.3364239
  8. X. Kong, X. Liu, B. Jedari, M. Li, L. Wan, and F. Xia, “Mobile crowdsourcing in smart cities: Technologies, applications, and future challenges,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8095–8113, 2019. [Online]. Available: 10.1109/JIOT.2019.2921879
  9. J. Phuttharak and S. W. Loke, “A review of mobile crowdsourcing architectures and challenges: Toward crowd-empowered internet-of-things,” IEEE Access, vol. 7, pp. 304–324, 2019. [Online]. Available: 10.1109/ACCESS.2018.2885353
  10. V. S. Dasari, B. Kantarci, M. Pouryazdan, L. Foschini, and M. Girolami, “Game theory in mobile crowdsensing: A comprehensive survey,” Sensors, vol. 20, no. 7, p. 2055, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/7/2055
  11. V. K. Singh, A. S. Jasti, S. K. Singh, S. Mishra, and A. Alkhayyat, “A quality aware multiunit double auction framework for iot-based mobile crowdsensing in strategic setting,” IEEE Access, vol. 10, pp. 67 976–67 999, 2022. [Online]. Available: 10.1109/ACCESS.2022.3186095
  12. A. Pődör and S. Szabó, “Geo-tagged environmental noise measurement with smartphones: Accuracy and perspectives of crowdsourced mapping,” Environment and Planning B: Urban Analytics and City Science, vol. 48, no. 9, pp. 2710–2725, 2021. [Online]. Available: https://doi.org/10.1177/2399808320987567
  13. M. Staniek, “Road pavement condition diagnostics using smartphone-based data crowdsourcing in smart cities,” Journal of Traffic and Transportation Engineering (English Edition), vol. 8, no. 4, pp. 554–567, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2095756421000192
  14. C. Wu, Z. Wang, S. Hu, J. Lepine, X. Na, D. Ainalis, and M. Stettler, “An automated machine-learning approach for road pothole detection using smartphone sensor data,” Sensors, vol. 20, no. 19, pp. 1–23, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/19/5564
  15. E. Zhang, R. Trujillo, J. M. Templeton, and C. Poellabauer, “A study on mobile crowd sensing systems for healthcare scenarios,” IEEE Access, vol. 11, pp. 140 325–140 347, 2023. [Online]. Available: 10.1109/ACCESS.2023.3342158
  16. K. B. Ramadi and F. Nguyen, “Rapid crowdsourced innovation for covid-19 response and economic growth,” NPJ Digital Medicine, vol. 4, no. 1, pp. 1–5, 2021. [Online]. Available: 10.1038/s41746-021-00397-5
  17. V. K. Singh, S. Mukhopadhyay, F. Xhafa, and A. Sharma, “A budget feasible mechanism for hiring doctors in e-healthcare,” in 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), Krakow, Poland, May 2018, pp. 785–792. [Online]. Available: 10.1109/AINA.2018.00117
  18. T. Giannetsos, T. Dimitriou, and N. R. Prasad, “People-centric sensing in assistive healthcare: Privacy challenges and directions,” Sec. and Commun. Netw., vol. 4, no. 11, pp. 1295–1307, Nov. 2011. [Online]. Available: DOI:10.1002/sec
  19. V. K. Singh, S. Mukhopadhyay, and R. Das, “Hiring doctors in e-healthcare with zero budget,” in Advances on P2P, Parallel, Grid, Cloud and Internet Computing, F. Xhafa, S. Caballé, and L. Barolli, Eds.   Cham: Springer International Publishing, 2018, pp. 379–390. [Online]. Available: https://doi.org/10.1007/978-3-319-69835-9_36’
  20. K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Tadokoro, T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima, and S. Kawatsuma, “Emergency response to the nuclear accident at the fukushima daiichi nuclear power plants using mobile rescue robots,” Journal of Field Robotics, vol. 30, no. 1, pp. 44–63, 2013. [Online]. Available: https://doi.org/10.1002/rob.21439
  21. M. Poblet, E. García-Cuesta, and P. Casanovas, “Crowdsourcing tools for disaster management: A review of platforms and methods,” in AI Approaches to the Complexity of Legal Systems, P. Casanovas, U. Pagallo, M. Palmirani, and G. Sartor, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 261–274. [Online]. Available: https://doi.org/10.1007/978-3-662-45960-7_19
  22. S. Vermicelli, L. Cricelli, and M. Grimaldi, “How can crowdsourcing help tackle the covid‐19 pandemic? an explorative overview of innovative collaborative practices.” R&D Management, vol. 51, no. 2, pp. 183–194, November 2020. [Online]. Available: https://doi.org/10.1111/radm.12443
  23. J. Mukhopadhyay, V. K. Singh, A. Pal, and A. Kumar, “A truthful budget feasible mechanism for iot-based participatory sensing with incremental arrival of budget,” Journal of Ambient Intelligence and Humanized Computing, vol. 13, pp. 1107–1124, Feb 2022. [Online]. Available: https://doi.org/10.1007/s12652-020-02844-9
  24. V. K. Singh, S. Mukhopadhyay, F. Xhafa, and A. Sharma, “A budget feasible peer graded mechanism for iot-based crowdsourcing,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 4, pp. 1531–1551, Jan 2020. [Online]. Available: https://doi.org/10.1007/s12652-019-01219-z
  25. G. Goel, A. Nikzad, and A. Singla, “Mechanism design for crowdsourcing markets with heterogeneous tasks,” in Proceedings of the Second AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2014, November 2-4, 2014, Pittsburgh, Pennsylvania, USA, vol. 2, 2014, pp. 77–86. [Online]. Available: https://doi.org/10.1609/hcomp.v2i1.13158
  26. Y. Cabannes and B. Lipietz, “Revisiting the democratic promise of participatory budgeting in light of competing political, good governance and technocratic logics,” Environment and Urbanization, vol. 30, no. 1, pp. 67–84, 2018. [Online]. Available: https://doi.org/10.1177/0956247817746279
  27. W. No and L. Hsueh, “How a participatory process with inclusive structural design allocates resources toward poor neighborhoods: the case of participatory budgeting in seoul, south korea,” International Review of Administrative Sciences, vol. 88, no. 3, pp. 663–681, 2020. [Online]. Available: https://doi.org/10.1177/0020852320943668
  28. S.-M. Jung, “Participatory budgeting and government efficiency: evidence from municipal governments in south korea,” International Review of Administrative Sciences, vol. 88, no. 4, pp. 1105–1123, 2021. [Online]. Available: https://doi.org/10.1177/0020852321991208
  29. C. Pateman, “Participatory democracy revisited,” Perspectives on Politics, vol. 10, no. 1, p. 7–19, 2012. [Online]. Available: 10.1017/S1537592711004877
  30. T. Roughgarden, “CS269I: Incentives in computer science (Stanford University Lecture Notes),” 2016, lecture 4: Voting, Machine Learning, and Participatory Democracy. [Online]. Available: https://timroughgarden.org/f16/l/l4.pdf
  31. A. Goel, A. K. Krishnaswamy, S. Sakshuwong, and T. Aitamurto, “Knapsack voting for participatory budgeting,” ACM Trans. Econ. Comput., vol. 7, no. 2, jul 2019. [Online]. Available: https://doi.org/10.1145/3340230
  32. G. Smith and G. Heidegger, “Book reviews:,” Theoria, vol. 58, no. 126, pp. 109 – 115, 2011. [Online]. Available: https://www.berghahnjournals.com/view/journals/theoria/58/126/th5812606.xml
  33. L. Bartocci, G. Grossi, S. G. Mauro, and C. Ebdon, “The journey of participatory budgeting: a systematic literature review and future research directions,” International Review of Administrative Sciences, vol. 89, no. 3, pp. 757–774, 2023. [Online]. Available: https://doi.org/10.1177/00208523221078938
  34. PBP, “where has it worked-the participatory budgeting project,” 2016, https://www.participatorybudgeting.org/pb-map/.
  35. Z. Duan, L. Tian, M. Yan, Z. Cai, Q. Han, and G. Yin, “Practical incentive mechanisms for iot-based mobile crowdsensing systems,” IEEE Access, vol. 5, pp. 20 383–20 392, 2017. [Online]. Available: 10.1109/ACCESS.2017.2751304
  36. Z. Feng, Y. Zhu, Q. Zhang, L. M. Ni, and A. V. Vasilakos, “TRAC: Truthful auction for location-aware collaborative sensing in mobile crowdsourcing,” in IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, Toronto, ON, Canada, April 2014, pp. 1231–1239. [Online]. Available: 10.1109/INFOCOM.2014.6848055
  37. H. Wang, S. Guo, J. Cao, and M. Guo, “Melody: A long-term dynamic quality-aware incentive mechanism for crowdsourcing,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 4, pp. 901–914, 2018. [Online]. Available: https://doi.org/10.1109/TPDS.2017.2775232
  38. D. Yu, Z. Zhou, and Y. Wang, “Crowdsourcing software task assignment method for collaborative development,” IEEE Access, vol. 7, pp. 35 743–35 754, 2019. [Online]. Available: 10.1109/ACCESS.2019.2905054
  39. H. Gao, J. An, C. Zhou, and L. Li, “Quality-aware incentive mechanism for social mobile crowd sensing,” IEEE Communications Letters, vol. 27, no. 1, pp. 263–267, 2023. [Online]. Available: 10.1109/LCOMM.2022.3204348
  40. X. Liu, C. Fu, W. Wu, M. Li, W. Wang, V. Chau, and J. Luo, “Budget-feasible mechanisms in two-sided crowdsensing markets: Truthfulness, fairness, and efficiency,” IEEE Transactions on Mobile Computing, vol. 22, no. 12, pp. 6938–6955, 2023. [Online]. Available: 10.1109/TMC.2022.3201260
  41. Y. Zhou, F. Tong, and S. He, “Bi-objective incentive mechanism for mobile crowdsensing with budget/cost constraint,” IEEE Transactions on Mobile Computing, vol. 23, no. 1, pp. 223–237, 2024. [Online]. Available: 10.1109/TMC.2022.3229470
  42. J. Mukhopadhyay, V. K. Singh, S. Mukhopadhyay, M. M. Dhananjaya, and A. Pal, “An egalitarian approach of scheduling time restricted tasks in mobile crowdsourcing for double auction environment,” Int. J. Web Grid Serv., vol. 17, no. 3, p. 221–245, jan 2021. [Online]. Available: https://doi.org/10.1504/ijwgs.2021.116536
  43. D. Suhag and V. Jha, “A comprehensive survey on mobile crowdsensing systems,” Journal of Systems Architecture, vol. 142, p. 102952, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1383762123001315
  44. H. Gao and C. H. Liu, “A survey of incentive mechanisms for participatory sensing,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 918–943, 2015. [Online]. Available: DOI:10.1109/COMST.2014.2387836
  45. M. Zulfiqar, M. N. Malik, and H. H. Khan, “Microtasking activities in crowdsourced software development: A systematic literature review,” IEEE Access, vol. 10, pp. 24 721–24 737, 2022. [Online]. Available: 10.1109/ACCESS.2022.3148400
  46. J. Liu, H. Shen, H. S. Narman, W. Chung, and Z. Lin, “A survey of mobile crowdsensing techniques: A critical component for the internet of things,” ACM Trans. Cyber-Phys. Syst., vol. 2, no. 3, pp. 1–26, Jun. 2018. [Online]. Available: https://doi.org/10.1145/3185504
  47. F. Daniel, P. Kucherbaev, C. Cappiello, B. Benatallah, and M. Allahbakhsh, “Quality control in crowdsourcing: A survey of quality attributes, assessment techniques, and assurance actions,” ACM Computing Surveys, vol. 51, no. 1, pp. 7:1–7:40, Jan. 2018. [Online]. Available: http://doi.acm.org/10.1145/3148148
  48. J. Huo, L. Wang, X. Wen, D. Gesbert, and Z. Lu, “Cost-efficient vehicular crowdsensing based on implicit relation aware graph attention networks,” IEEE Transactions on Industrial Informatics, vol. 20, no. 3, pp. 3715–3725, 2024. [Online]. Available: 10.1109/TII.2023.3313649
  49. K. Abualsaud, T. M. Elfouly, T. Khattab, E. Yaacoub, L. S. Ismail, M. H. Ahmed, and M. Guizani, “A survey on mobile crowd-sensing and its applications in the IoT era,” IEEE Access, vol. 7, pp. 3855–3881, 2019. [Online]. Available: 10.1109/ACCESS.2018.2885918
  50. S. S. Bhatti, X. Gao, and G. Chen, “General framework, opportunities and challenges for crowdsourcing techniques: A comprehensive survey,” Journal of Systems and Software, vol. 167, p. 110611, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0164121220300893
  51. W. Tan and Z. Jiang, “A novel experience-based incentive mechanism for mobile crowdsensing system,” in Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing, ser. AIIPCC ’19.   New York, NY, USA: Association for Computing Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3371425.3371459
  52. Y. Singer, “Budget feasible mechanism design,” SIGecom Exch., vol. 12, no. 2, pp. 24–31, Nov. 2014. [Online]. Available: https://doi.org/10.1145/2692359.2692366
  53. SomerStat, “https://catalog.data.gov/dataset/participatory-budgeting-submissions,” 2023. [Online]. Available: data.somervillema.gov
  54. P. Jalaly and É. Tardos, “Simple and efficient budget feasible mechanisms for monotone submodular valuations,” ACM Transactions on Economics and Computation (TEAC), vol. 9, no. 1, pp. 1 – 20, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:15747265
  55. N. Chen, N. Gravin, and P. Lu, “On the approximability of budget feasible mechanisms,” in Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’11.   USA: Society for Industrial and Applied Mathematics, 2011, p. 685–699. [Online]. Available: https://dl.acm.org/doi/10.5555/2133036.2133090

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com