Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 439 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Relativistic EELS scattering cross-sections for microanalysis based on Dirac solutions (2405.10151v2)

Published 16 May 2024 in physics.atom-ph, cond-mat.mtrl-sci, physics.app-ph, and quant-ph

Abstract: The rich information of electron energy-loss spectroscopy (EELS) comes from the complex inelastic scattering process whereby fast electrons transfer energy and momentum to atoms, exciting bound electrons from their ground states to higher unoccupied states. To quantify EELS, the common practice is to compare the cross-sections integrated within an energy window or fit the observed spectrum with theoretical differential cross-sections calculated from a generalized oscillator strength (GOS) database with experimental parameters. The previous Hartree-Fock-based and DFT-based GOS are calculated from Schr\"odinger's solution of atomic orbitals, which does not include the full relativistic effects. Here, we attempt to go beyond the limitations of the Schr\"odinger solution in the GOS tabulation by including the full relativistic effects using the Dirac equation within the local density approximation, which is particularly important for core-shell electrons of heavy elements with strong spin-orbit coupling. This has been done for all elements in the periodic table (up to Z = 118) for all possible excitation edges using modern computing capabilities and parallelization algorithms. The relativistic effects of fast incoming electrons were included to calculate cross-sections that are specific to the acceleration voltage. We make these tabulated GOS available under an open-source license to the benefit of both academic users as well as allowing integration into commercial solutions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. doi:10.1038/s41598-017-07709-4. URL https://www.nature.com/articles/s41598-017-07709-4
  2. doi:10.1017/S1431927608087448.
  3. D. Jannis, joverbee/pyeelsmodel: v0.1.1 (Apr. 2024). doi:10.5281/zenodo.10992986. URL https://doi.org/10.5281/zenodo.10992986
  4. doi:10.1016/j.ultramic.2007.03.004.
  5. doi:10.1016/j.ultramic.2006.05.006.
  6. doi:10.1063/1.439184.
  7. doi:10.1080/13642818708217957.
  8. doi:10.1016/0304-3991(89)90263-5.
  9. doi:10.1088/0953-4075/35/1/303.
  10. doi:10.1103/PhysRevA.77.042701. URL https://link.aps.org/doi/10.1103/PhysRevA.77.042701
  11. doi:10.1016/S0304-3991(97)00007-7.
  12. doi:10.1016/0003-4916(58)90036-8.
  13. doi:10.1080/01418618408236561.
  14. doi:10.1016/0304-3991(95)00029-Z.
  15. doi:10.1016/j.ultramic.2004.11.001.
  16. doi:10.1063/1.2918115.
  17. doi:10.1016/j.micron.2007.10.020.
  18. doi:10.1016/j.ultramic.2007.10.011.
  19. doi:10.1103/PhysRevB.95.174412.
  20. doi:10.1143/JPSJ.12.618.
  21. doi:10.1080/01418618308243112.
  22. doi:10.1080/01418618408236560.
  23. doi:10.1016/S0304-3991(02)00380-7.
  24. doi:10.1016/j.ultramic.2005.03.005.
  25. doi:10.1103/PhysRevB.77.184107.
  26. doi:10.1016/j.ultramic.2016.06.003. URL http://dx.doi.org/10.1016/j.ultramic.2016.06.003
  27. doi:10.1016/bs.aiep.2019.04.001. URL https://linkinghub.elsevier.com/retrieve/pii/S1076567019300266
  28. doi:10.1103/physrevresearch.1.033186. URL https://doi.org/10.1103/PhysRevResearch.1.033186
  29. doi:10.1103/PhysRev.102.385. URL https://link.aps.org/doi/10.1103/PhysRev.102.385
  30. doi:10.1016/S0968-4328(97)00044-9. URL https://linkinghub.elsevier.com/retrieve/pii/S0968432897000449
  31. doi:10.1103/PhysRevB.72.045142.
  32. doi:10.1103/PhysRevB.74.064106.
  33. doi:10.5281/zenodo.7645765. URL https://doi.org/10.5281/zenodo.7645765
  34. doi:10.1016/j.cpc.2019.02.011. URL https://doi.org/10.1016/j.cpc.2019.02.011
  35. doi:10.1139/P07-197.
  36. doi:10.1103/PhysRevLett.77.3865. URL https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
  37. doi:10.5281/zenodo.11199911. URL https://doi.org/10.5281/zenodo.11199911
  38. Z. Zhang, Gos demo: Tutorial on how to use dirac gos for eels quantification (2024). URL https://github.com/zezhong-zhang/gos_demo
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com