Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Phenomenology of many-body localization in bond-disordered spin chains (2405.10062v2)

Published 16 May 2024 in cond-mat.dis-nn, cond-mat.quant-gas, cond-mat.stat-mech, and quant-ph

Abstract: Many-body localization (MBL) hinders the thermalization of quantum many-body systems in the presence of strong disorder. In this work, we study the MBL regime in bond-disordered spin-1/2 XXZ spin chain, finding the multimodal distribution of entanglement entropy in eigenstates, sub-Poissonian level statistics, and revealing a relation between operators and initial states required for examining the breakdown of thermalization in the time evolution of the system. We employ a real space renormalization group scheme to identify these phenomenological features of the MBL regime that extend beyond the standard picture of local integrals of motion relevant for systems with disorder coupled to on-site operators. Our results pave the way for experimental probing of MBL in bond-disordered spin chains.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (76)
  1. J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
  2. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
  3. M. Srednicki, The approach to thermal equilibrium in quantized chaotic systems, Journal of Physics A: Mathematical and General 32, 1163 (1999).
  4. D. Basko, I. Aleiner, and B. Altshuler, Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states, Annals of Physics 321, 1126 (2006).
  5. I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting Electrons in Disordered Wires: Anderson Localization and Low-T𝑇Titalic_T Transport, Phys. Rev. Lett. 95, 206603 (2005).
  6. A. Pal and D. A. Huse, Many-body localization phase transition, Phys. Rev. B 82, 174411 (2010).
  7. R. Nandkishore and D. A. Huse, Many-Body Localization and Thermalization in Quantum Statistical Mechanics, Annual Review of Condensed Matter Physics 6, 15 (2015).
  8. F. Alet and N. Laflorencie, Many-body localization: An introduction and selected topics, Comptes Rendus Physique 19, 498 (2018).
  9. L. F. Santos, G. Rigolin, and C. O. Escobar, Entanglement versus chaos in disordered spin chains, Phys. Rev. A 69, 042304 (2004).
  10. V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75, 155111 (2007).
  11. D. J. Luitz, N. Laflorencie, and F. Alet, Many-body localization edge in the random-field Heisenberg chain, Phys. Rev. B 91, 081103 (2015).
  12. P. Sierant, D. Delande, and J. Zakrzewski, Many-body localization due to random interactions, Phys. Rev. A 95, 021601 (2017).
  13. P. Sierant and J. Zakrzewski, Many-body localization of bosons in optical lattices, New Journal of Physics 20, 043032 (2018).
  14. M. Hopjan and F. Heidrich-Meisner, Many-body localization from a one-particle perspective in the disordered one-dimensional Bose-Hubbard model, Phys. Rev. A 101, 063617 (2020).
  15. R. Mondaini and M. Rigol, Many-body localization and thermalization in disordered Hubbard chains, Phys. Rev. A 92, 041601 (2015).
  16. P. Prelovšek, O. S. Barišić, and M. Žnidarič, Absence of full many-body localization in the disordered Hubbard chain, Phys. Rev. B 94, 241104 (2016).
  17. J. Zakrzewski and D. Delande, Spin-charge separation and many-body localization, Phys. Rev. B 98, 014203 (2018).
  18. M. Kozarzewski, P. Prelovšek, and M. Mierzejewski, Spin subdiffusion in the disordered Hubbard chain, Phys. Rev. Lett. 120, 246602 (2018).
  19. A. Lazarides, A. Das, and R. Moessner, Fate of many-body localization under periodic driving, Phys. Rev. Lett. 115, 030402 (2015).
  20. D. A. Abanin, W. De Roeck, and F. Huveneers, Theory of many-body localization in periodically driven systems, Annals of Physics 372, 1 (2016).
  21. L. Zhang, V. Khemani, and D. A. Huse, A floquet model for the many-body localization transition, Phys. Rev. B 94, 224202 (2016).
  22. E. Bairey, G. Refael, and N. H. Lindner, Driving induced many-body localization, Phys. Rev. B 96, 020201 (2017).
  23. S. J. Garratt and J. T. Chalker, Many-body delocalization as symmetry breaking, Phys. Rev. Lett. 127, 026802 (2021).
  24. P. Sierant, M. Lewenstein, and J. Zakrzewski, Polynomially filtered exact diagonalization approach to many-body localization, Phys. Rev. Lett. 125, 156601 (2020a).
  25. T. Chanda, P. Sierant, and J. Zakrzewski, Time dynamics with matrix product states: Many-body localization transition of large systems revisited, Phys. Rev. B 101, 035148 (2020a).
  26. P. Sierant, D. Delande, and J. Zakrzewski, Thouless time analysis of anderson and many-body localization transitions, Phys. Rev. Lett. 124, 186601 (2020b).
  27. D. Sels and A. Polkovnikov, Thermalization of dilute impurities in one dimensional spin chains (2021), 2105.09348 [quant-ph] .
  28. D. Sels, Bath-induced delocalization in interacting disordered spin chains, Phys. Rev. B 106, L020202 (2022).
  29. P. Sierant and J. Zakrzewski, Challenges to observation of many-body localization, Phys. Rev. B 105, 224203 (2022).
  30. M. Žnidarič, T. Prosen, and P. Prelovšek, Many-body localization in the Heisenberg XXZ magnet in a random field, Phys. Rev. B 77, 064426 (2008).
  31. J. H. Bardarson, F. Pollmann, and J. E. Moore, Unbounded growth of entanglement in models of many-body localization, Phys. Rev. Lett. 109, 017202 (2012).
  32. A. Nanduri, H. Kim, and D. A. Huse, Entanglement spreading in a many-body localized system, Phys. Rev. B 90, 064201 (2014).
  33. M. Serbyn, Z. Papić, and D. A. Abanin, Quantum quenches in the many-body localized phase, Phys. Rev. B 90, 174302 (2014).
  34. M. Serbyn and J. E. Moore, Spectral statistics across the many-body localization transition, Phys. Rev. B 93, 041424 (2016).
  35. C. L. Bertrand and A. M. García-García, Anomalous thouless energy and critical statistics on the metallic side of the many-body localization transition, Phys. Rev. B 94, 144201 (2016).
  36. P. Sierant and J. Zakrzewski, Level statistics across the many-body localization transition, Phys. Rev. B 99, 104205 (2019).
  37. W. Buijsman, V. Cheianov, and V. Gritsev, Random matrix ensemble for the level statistics of many-body localization, Phys. Rev. Lett. 122, 180601 (2019).
  38. P. Sierant and J. Zakrzewski, Model of level statistics for disordered interacting quantum many-body systems, Phys. Rev. B 101, 104201 (2020).
  39. M. Serbyn, Z. Papić, and D. A. Abanin, Universal slow growth of entanglement in interacting strongly disordered systems, Phys. Rev. Lett. 110, 260601 (2013a).
  40. B. Bauer and C. Nayak, Area laws in a many-body localized state and its implications for topological order, Journal of Statistical Mechanics: Theory and Experiment 2013, P09005 (2013).
  41. M. Serbyn, Z. Papić, and D. A. Abanin, Local conservation laws and the structure of the many-body localized states, Phys. Rev. Lett. 111, 127201 (2013b).
  42. D. A. Huse, R. Nandkishore, and V. Oganesyan, Phenomenology of fully many-body-localized systems, Phys. Rev. B 90, 174202 (2014).
  43. V. Ros, M. Mueller, and A. Scardicchio, Integrals of motion in the many-body localized phase, Nuclear Physics B 891, 420 (2015).
  44. L. Rademaker and M. Ortuño, Explicit local integrals of motion for the many-body localized state, Phys. Rev. Lett. 116, 010404 (2016).
  45. C. Monthus, Many-body-localization transition: strong multifractality spectrum for matrix elements of local operators, Journal of Statistical Mechanics: Theory and Experiment 2016, 073301 (2016).
  46. S. J. Thomson and M. Schiró, Time evolution of many-body localized systems with the flow equation approach, Phys. Rev. B 97, 060201 (2018).
  47. S. J. Thomson and M. Schirò, Local integrals of motion in quasiperiodic many-body localized systems, SciPost Phys. 14, 125 (2023).
  48. B. Leipner-Johns and R. Wortis, Charge- and spin-specific local integrals of motion in a disordered Hubbard model, Phys. Rev. B 100, 125132 (2019).
  49. S. Adami, M. Amini, and M. Soltani, Structural properties of local integrals of motion across the many-body localization transition via a fast and efficient method for their construction, Phys. Rev. B 106, 054202 (2022).
  50. J. Z. Imbrie, Diagonalization and many-body localization for a disordered quantum spin chain, Phys. Rev. Lett. 117, 027201 (2016).
  51. A. Rényi, Egy egydimenziós véletlen térkitöltési problémáról, Publ. Math. Inst. Hung. Acad. Sci 3, 109 (1958).
  52. C. Dasgupta and S.-k. Ma, Low-temperature properties of the random heisenberg antiferromagnetic chain, Phys. Rev. B 22, 1305 (1980).
  53. D. S. Fisher, Random antiferromagnetic quantum spin chains, Physical review b 50, 3799 (1994).
  54. R. Vosk and E. Altman, Many-body localization in one dimension as a dynamical renormalization group fixed point, Phys. Rev. Lett. 110, 067204 (2013).
  55. X. Turkeshi, P. Ruggiero, and P. Calabrese, Negativity spectrum in the random singlet phase, Phys. Rev. B 101, 064207 (2020).
  56. P. Ruggiero and X. Turkeshi, Quantum information spreading in random spin chains, Phys. Rev. B 106, 134205 (2022).
  57. Y. Huang and J. E. Moore, Excited-state entanglement and thermal mutual information in random spin chains, Phys. Rev. B 90, 220202 (2014).
  58. M. Pouranvari and K. Yang, Entanglement spectrum and entangled modes of highly excited states in random x⁢x𝑥𝑥xxitalic_x italic_x spin chains, Phys. Rev. B 92, 245134 (2015).
  59. With probability ≈0.02absent0.02\approx 0.02≈ 0.02, the illustrated subsystem of states |±⟩ketplus-or-minus|\pm\rangle| ± ⟩ contains states of the form 12⁢(|K+⟩±|K−⟩)12plus-or-minusketsubscript𝐾ketsubscript𝐾\frac{1}{\sqrt{2}}(|K_{+}\rangle\pm|K_{-}\rangle)divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ( | italic_K start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ⟩ ± | italic_K start_POSTSUBSCRIPT - end_POSTSUBSCRIPT ⟩ ).
  60. D. J. Luitz, Long tail distributions near the many-body localization transition, Phys. Rev. B 93, 134201 (2016).
  61. L. Herviou, S. Bera, and J. H. Bardarson, Multiscale entanglement clusters at the many-body localization phase transition, Phys. Rev. B 99, 134205 (2019).
  62. Y.-Z. You, X.-L. Qi, and C. Xu, Entanglement holographic mapping of many-body localized system by spectrum bifurcation renormalization group, Phys. Rev. B 93, 104205 (2016).
  63. N. Macé, F. Alet, and N. Laflorencie, Multifractal scalings across the many-body localization transition, Phys. Rev. Lett. 123, 180601 (2019).
  64. L. Vidmar and M. Rigol, Entanglement entropy of eigenstates of quantum chaotic hamiltonians, Phys. Rev. Lett. 119, 220603 (2017).
  65. R. Vosk, D. A. Huse, and E. Altman, Theory of the many-body localization transition in one-dimensional systems, Phys. Rev. X 5, 031032 (2015).
  66. A. C. Potter, R. Vasseur, and S. A. Parameswaran, Universal properties of many-body delocalization transitions, Phys. Rev. X 5, 031033 (2015).
  67. A. Goremykina, R. Vasseur, and M. Serbyn, Analytically solvable renormalization group for the many-body localization transition, Phys. Rev. Lett. 122, 040601 (2019).
  68. A. Morningstar and D. A. Huse, Renormalization-group study of the many-body localization transition in one dimension, Phys. Rev. B 99, 224205 (2019).
  69. A. Morningstar, D. A. Huse, and J. Z. Imbrie, Many-body localization near the critical point, Phys. Rev. B 102, 125134 (2020).
  70. R. Yousefjani and A. Bayat, Mobility edge in long-range interacting many-body localized systems, Phys. Rev. B 107, 045108 (2023).
  71. J. Šuntajs, T. Prosen, and L. Vidmar, Spectral properties of three-dimensional anderson model, Annals of Physics 435, 168469 (2021).
  72. J. Šuntajs and L. Vidmar, Ergodicity breaking transition in zero dimensions, Physical Review Letters 129, 060602 (2022).
  73. T. Koffel, M. Lewenstein, and L. Tagliacozzo, Entanglement entropy for the long-range ising chain in a transverse field, Phys. Rev. Lett. 109, 267203 (2012).
  74. S. Goto and I. Danshita, Performance of the time-dependent variational principle for matrix product states in the long-time evolution of a pure state, Phys. Rev. B 99, 054307 (2019).
  75. T. Chanda, P. Sierant, and J. Zakrzewski, Many-body localization transition in large quantum spin chains: The mobility edge, Phys. Rev. Research 2, 032045 (2020b).
  76. https://www.scipy.org.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com