Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Metrology with Higher-order Exceptional Points in Atom-cavity Magnonics (2405.09899v3)

Published 16 May 2024 in quant-ph

Abstract: Exceptional points (EPs), which arose early from non-Hermitian physics, significantly amplify the system's response to minor perturbations, and they act as a useful concept to enhance measurement in metrology. In particular, such a metrological enhancement grows dramatically with the EP's order. However, the Langevin noises intrinsically existing in the non-Hermitian systems diminish this enhancement. In this study, we propose a protocol for quantum metrology with the construction of higher-order EPs (HOEPs) in an atom-cavity system through Hermitian magnon-photon interaction. The construction of HOEPs utilizes the atom-cavity non-Hermitian-like dynamical behavior but avoids the external Langevin noises via the Hermitian interaction. A general analysis is exhibited for the construction of arbitrary -order EP (EPn). As a demonstration of the superiority of these HOEPs in quantum metrology, we work out an EP3/4-based atomic sensor with sensitivity being orders of magnitude higher than that achievable in an EP2-based atomic sensor. We further unveil the mechanism behind the sensitivity enhancement from HOEPs. The experimental establishment for this proposal is suggested with potential candidates. This EP-based atomic sensor, taking advantage of the atom-light interface, offers new insight into quantum metrology with HOEPs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. M.-A. Miri and A. Alu, Science 363, eaar7709 (2019).
  2. W. Heiss, Journal of Physics A: Mathematical and Theoretical 45, 444016 (2012).
  3. J. Wiersig, Physical review A 93, 033809 (2016).
  4. J. Wiersig, Photonics Research 8, 1457 (2020).
  5. J. Wiersig, Physical review letters 112, 203901 (2014).
  6. I. Mandal and E. J. Bergholtz, Physical review letters 127, 186601 (2021).
  7. S. Sayyad and F. K. Kunst, Physical Review Research 4, 023130 (2022).
  8. W. Langbein, Physical Review A 98, 023805 (2018).
  9. Y.-X. Wang and A. Clerk, Physical Review A 99, 063834 (2019).
  10. D. Budker and M. Romalis, Nature physics 3, 227 (2007).
  11. N. B. Delone and V. P. Krainov, Physics-Uspekhi 42, 669 (1999).
  12. A. Mostafazadeh, International Journal of Geometric Methods in Modern Physics 7, 1191 (2010).
  13. A. Mostafazadeh and A. Batal, Journal of Physics A: Mathematical and General 37, 11645 (2004).
  14. A. Mostafazadeh, Journal of Mathematical Physics 43, 205 (2002).
  15. R. Okugawa and T. Yokoyama, Physical Review B 99, 041202 (2019).
  16. M. Ban, Physical Review A 47, 5093 (1993).
  17. T. Holstein and H. Primakoff, Physical Review 58, 1098 (1940).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com