Optimal Switching Networks for Paired-Egress Bell State Analyzer Pools (2405.09860v1)
Abstract: To scale quantum computers to useful levels, we must build networks of quantum computational nodes that can share entanglement for use in distributed forms of quantum algorithms. In one proposed architecture, node-to-node entanglement is created when nodes emit photons entangled with stationary memories, with the photons routed through a switched interconnect to a shared pool of Bell state analyzers (BSAs). Designs that optimize switching circuits will reduce loss and crosstalk, raising entanglement rates and fidelity. We present optimal designs for switched interconnects constrained to planar layouts, appropriate for silicon waveguides and Mach-Zehnder interferometer (MZI) $2 \times 2$ switch points. The architectures for the optimal designs are scalable and algorithmically structured to pair any arbitrary inputs in a rearrangeable, non-blocking way. For pairing $N$ inputs, $N(N - 2)/4$ switches are required, which is less than half of number of switches required for full permutation switching networks. An efficient routing algorithm is also presented for each architecture. These designs can also be employed in reverse for entanglement generation using a shared pool of entangled paired photon sources.
- C. Clos, “A study of non-blocking switching networks,” Bell System Technical Journal, vol. 32, no. 2, pp. 406–424, 1953, doi:10.1002/j.1538-7305.1953.tb01433.x.
- D. C. Opferman and N. T. Tsao-Wu, “On a class of rearrangeable switching networks part i: Control algorithm,” The Bell System Technical Journal, vol. 50, no. 5, pp. 1579–1600, 1971, doi:10.1002/j.1538-7305.1971.tb02569.x.
- V. E. Beneš, “Optimal rearrangeable multistage connecting networks,” The Bell System Technical Journal, vol. 43, no. 4, pp. 1641–1656, 1964, doi:10.1002/j.1538-7305.1964.tb04103.x.
- A. Waksman, “A permutation network,” Journal of the ACM (JACM), vol. 15, no. 1, pp. 159–163, 1968, doi:10.1145/321439.321449.
- W. C. Athas and C. L. Seitz, “Multicomputers: message-passing concurrent computers,” IEEE Computer, vol. 21, pp. 9–24, Aug. 1988, doi:10.1109/2.73.
- D. D. Awschalom et al., “A roadmap for quantum interconnects,” Argonne National Laboratory (ANL), Argonne, IL (United States), Tech. Rep., 2022, doi:10.2172/1900586.
- L. Jiang, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Distributed quantum computation based on small quantum registers,” Phys. Rev. A, vol. 76, p. 062323, Dec 2007, doi:10.1103/PhysRevA.76.062323.
- L. Jiang, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Scalable quantum networks based on few-qubit registers,” International Journal of Quantum Information, vol. 8, no. 01n02, pp. 93–104, 2010, doi:10.1142/S0219749910006058.
- J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” QIC, vol. 9, no. 2, 2009.
- J. Kim et al., “System design for large-scale ion trap quantum information processor,” QIC, vol. 5, no. 7, pp. 515–537, 2005, doi:10.26421/QIC5.7-1.
- Y. L. Lim, S. D. Barrett, A. Beige, P. Kok, and L. C. Kwek, “Repeat-Until-Success quantum computing using stationary and flying qubits,” Physical Review Letters, vol. 95, no. 3, p. 30505, 2005, doi:10.1103/PhysRevA.73.012304.
- C. Monroe et al., “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A, vol. 89, p. 022317, Feb 2014, doi:10.1103/PhysRevA.89.022317.
- N. H. Nickerson, Y. Li, and S. C. Benjamin, “Topological quantum computing with a very noisy network and local error rates approaching one percent,” Nature communications, vol. 4, p. 1756, 2013, doi:10.1038/ncomms2773.
- D. K. L. Oi, S. J. Devitt, and L. C. L. Hollenberg, “Scalable error correction in distributed ion trap computers,” Physical Review A, vol. 74, p. 052313, 2006, doi:10.48550/arXiv.quant-ph/0606226.
- R. Van Meter III, “Architecture of a quantum multicomputer optimized for Shor’s factoring algorithm,” Ph.D. dissertation, Keio University, 2006, available as arXiv:quant-ph/0607065. doi:10.48550/arXiv.quant-ph/0607065.
- R. Van Meter and S. Devitt, “The path to scalable distributed quantum computing,” IEEE Computer, vol. 49, no. 9, pp. 31–42, Sep. 2016, doi:10.1109/MC.2016.291.
- A. Yimsiriwattana and S. J. Lomonaco Jr, “Distributed quantum computing: A distributed shor algorithm,” in Quantum Information and Computation II, vol. 5436. SPIE, 2004, pp. 360–372, doi:10.1117/12.546504.
- S. DiAdamo, M. Ghibaudi, and J. Cruise, “Distributed quantum computing and network control for accelerated VQE,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–21, 2021, doi:10.1109/TQE.2021.3057908.
- R. Satoh, M. Hajdušek, and R. Van Meter, “Federated graph state preparation on noisy, distributed quantum computers,” IPSJ Quantum Software SIG Technical Reports, vol. 2020-QS-1, p. 6, 2020.
- R. Van Meter, K. Nemoto, W. Munro, and K. M. Itoh, “Distributed arithmetic on a quantum multicomputer,” ACM SIGARCH Computer Architecture News, vol. 34, no. 2, pp. 354–365, 2006, doi:10.48550/arXiv.quant-ph/0607160.
- R. Van Meter, K. Nemoto, and W. Munro, “Communication links for distributed quantum computation,” IEEE Transactions on Computers, vol. 56, no. 12, pp. 1643–1653, 2007, doi:10.48550/arXiv.quant-ph/0701043.
- M. Caleffi et al., “Distributed quantum computing: a survey,” arXiv preprint arXiv:2212.10609, 2022, doi:10.48550/arXiv.2212.10609.
- S. Gauthier, G. Vardoyan, and S. Wehner, “An architecture for control of entanglement generation switches in quantum networks,” IEEE Transactions on Quantum Engineering, vol. 4, no. 01, pp. 1–17, 2023, doi:10.1109/TQE.2023.3320047.
- M. Alshowkan et al., “Reconfigurable quantum local area network over deployed fiber,” PRX Quantum, vol. 2, p. 040304, Oct 2021, doi:10.1103/PRXQuantum.2.040304.
- E. Bersin et al., “Development of a Boston-area 50-km fiber quantum network testbed,” Phys. Rev. Appl., vol. 21, p. 014024, Jan 2024, doi:10.1103/PhysRevApplied.21.014024.
- W. Kozlowski et al., “Rfc 9340: Architectural principles for a quantum internet,” 2023, doi:10.17487/RFC9340.
- M. Hajdušek and R. Van Meter, “Quantum communications,” arXiv preprint arXiv:2311.02367, 2023, doi:10.48550/arXiv.2311.02367.
- S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018, doi:10.1126/science.aam9288.
- R. Van Meter et al., “A quantum internet architecture,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 2022, pp. 341–352, doi:10.1109/QCE53715.2022.00055.
- R. J. Drost, T. J. Moore, and M. Brodsky, “Switching networks for pairwise-entanglement distribution,” Journal of Optical Communications and Networking, vol. 8, no. 5, pp. 331–342, 2016, doi:10.1364/JOCN.8.000331.
- R. A. Spanke and V. Beneš, “N-stage planar optical permutation network,” Applied Optics, vol. 26, no. 7, pp. 1226–1229, 1987, doi:10.1364/AO.26.001226.
- V. Krutyanskiy et al., “Entanglement of trapped-ion qubits separated by 230 meters,” Phys. Rev. Lett., vol. 130, p. 050803, Feb 2023, doi:10.1103/PhysRevLett.130.050803.
- A. Crespi et al., “Integrated photonic quantum gates for polarization qubits,” Nature communications, vol. 2, no. 1, p. 566, 2011, doi:10.1038/ncomms1570.
- G. Corrielli et al., “Rotated waveplates in integrated waveguide optics,” Nature communications, vol. 5, no. 1, p. 4249, 2014, doi:10.1038/ncomms5249.
- X. Xu et al., “Self-calibrating programmable photonic integrated circuits,” Nature Photonics, vol. 16, no. 8, pp. 595–602, 2022, doi:10.1038/s41566-022-01020-z.
- W. Bogaerts et al., “Programmable photonic circuits,” Nature, vol. 586, no. 7828, pp. 207–216, 2020, doi:10.1038/s41586-020-2764-0.
- J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nature Photonics, vol. 14, no. 5, pp. 273–284, 2020, doi:10.1038/s41566-019-0532-1.
- J. Kim et al., “1100x1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE Photonics Technology Letters, vol. 15, no. 11, pp. 1537–1539, 2003, doi:10.1109/LPT.2003.818653.
- N. C. Harris et al., “Large-scale quantum photonic circuits in silicon,” Nanophotonics, vol. 5, no. 3, pp. 456–468, 2016, doi:10.1515/nanoph-2015-0146.
- M. Lončar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Applied Physics Letters, vol. 77, no. 13, pp. 1937–1939, 2000, doi:10.1063/1.1311604.
- J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature photonics, vol. 3, no. 12, pp. 687–695, 2009, doi:10.48550/arXiv.1003.3928.
- C. Taballione et al., “8×\times× 8 reconfigurable quantum photonic processor based on silicon nitride waveguides,” Optics express, vol. 27, no. 19, pp. 26 842–26 857, 2019, doi:10.1364/OE.27.026842.
- A. Nesic et al., “Photonic-integrated circuits with non-planar topologies realized by 3d-printed waveguide overpasses,” Optics Express, vol. 27, no. 12, pp. 17 402–17 425, 2019, doi:10.1364/OE.27.017402.
- Y. Li and J. Thompson, “High-rate and high-fidelity modular interconnects between neutral atom quantum processors,” arXiv preprint arXiv:2401.04075, 2024, doi:10.48550/arXiv.2401.04075.