Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EFEAR-4D: Ego-Velocity Filtering for Efficient and Accurate 4D radar Odometry (2405.09780v1)

Published 16 May 2024 in cs.RO

Abstract: Odometry is a crucial component for successfully implementing autonomous navigation, relying on sensors such as cameras, LiDARs and IMUs. However, these sensors may encounter challenges in extreme weather conditions, such as snowfall and fog. The emergence of FMCW radar technology offers the potential for robust perception in adverse conditions. As the latest generation of FWCW radars, the 4D mmWave radar provides point cloud with range, azimuth, elevation, and Doppler velocity information, despite inherent sparsity and noises in the point cloud. In this paper, we propose EFEAR-4D, an accurate, highly efficient, and learning-free method for large-scale 4D radar odometry estimation. EFEAR-4D exploits Doppler velocity information delicately for robust ego-velocity estimation, resulting in a highly accurate prior guess. EFEAR-4D maintains robustness against point-cloud sparsity and noises across diverse environments through dynamic object removal and effective region-wise feature extraction. Extensive experiments on two publicly available 4D radar datasets demonstrate state-of-the-art reliability and localization accuracy of EFEAR-4D under various conditions. Furthermore, we have collected a dataset following the same route but varying installation heights of the 4D radar, emphasizing the significant impact of radar height on point cloud quality - a crucial consideration for real-world deployments. Our algorithm and dataset will be available soon at https://github.com/CLASS-Lab/EFEAR-4D.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. D. Adolfsson, M. Magnusson, A. Alhashimi, A. J. Lilienthal, and H. Andreasson, “Lidar-level localization with radar? the cfear approach to accurate, fast, and robust large-scale radar odometry in diverse environments,” IEEE Transactions on robotics, vol. 39, no. 2, pp. 1476–1495, 2022.
  2. G. Zhuoins, S. Lu, L. Xiong, H. Zhouins, L. Zheng, and M. Zhou, “4drvo-net: Deep 4D radar–visual odometry using multi-modal and multi-scale adaptive fusion,” IEEE Transactions on Intelligent Vehicles, 2023.
  3. T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping,” in 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS).   IEEE, 2020, pp. 5135–5142.
  4. J. Zhang, H. Zhuge, Z. Wu, G. Peng, M. Wen, Y. Liu, and D. Wang, “4dradarslam: A 4D imaging radar slam system for large-scale environments based on pose graph optimization,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 8333–8340.
  5. K. Harlow, H. Jang, T. D. Barfoot, A. Kim, and C. Heckman, “A new wave in robotics: Survey on recent mmwave radar applications in robotics,” arXiv preprint arXiv:2305.01135, 2023.
  6. Z. Hong, Y. Petillot, A. Wallace, and S. Wang, “Radar SLAM: A robust slam system for all weather conditions,” arXiv preprint arXiv:2104.05347, 2021.
  7. Y. Zhuang, B. Wang, J. Huai, and M. Li, “4d iRIOM: 4D imaging radar inertial odometry and mapping,” IEEE Robotics and Automation Letters, 2023.
  8. H. Chen, Y. Liu, and Y. Cheng, “Drio: Robust radar-inertial odometry in dynamic environments,” IEEE Robotics and Automation Letters, 2023.
  9. D. Kellner, M. Barjenbruch, J. Klappstein, J. Dickmann, and K. Dietmayer, “Instantaneous ego-motion estimation using doppler radar,” in 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).   IEEE, 2013, pp. 869–874.
  10. M. Zeller, J. Behley, M. Heidingsfeld, and C. Stachniss, “Gaussian radar transformer for semantic segmentation in noisy radar data,” IEEE Robotics and Automation Letters, vol. 8, no. 1, pp. 344–351, 2022.
  11. E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN revisited, revisited: why and how you should (still) use DBSCAN,” ACM Transactions on Database Systems (TODS), vol. 42, no. 3, pp. 1–21, 2017.
  12. S. H. Cen and P. Newman, “Precise ego-motion estimation with millimeter-wave radar under diverse and challenging conditions,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 6045–6052.
  13. P. Checchin, F. Gérossier, C. Blanc, R. Chapuis, and L. Trassoudaine, “Radar scan matching slam using the Fourier-Mellin transform,” in Field and Service Robotics: Results of the 7th International Conference.   Springer, 2010, pp. 151–161.
  14. M. Holder, S. Hellwig, and H. Winner, “Real-time pose graph SLAM based on radar,” in 2019 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2019, pp. 1145–1151.
  15. M. Rapp, M. Barjenbruch, M. Hahn, J. Dickmann, and K. Dietmayer, “Probabilistic ego-motion estimation using multiple automotive radar sensors,” Robotics and Autonomous Systems, vol. 89, pp. 136–146, 2017.
  16. A. Kramer, C. Stahoviak, A. Santamaria-Navarro, A.-A. Agha-Mohammadi, and C. Heckman, “Radar-inertial ego-velocity estimation for visually degraded environments,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 5739–5746.
  17. C. Doer and G. F. Trommer, “An EKF based approach to radar inertial odometry,” in 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI).   IEEE, 2020, pp. 152–159.
  18. Z. Zeng, X. Dang, Y. Li, et al., “Joint velocity ambiguity resolution and ego-motion estimation method for mmwave radar,” IEEE Robotics and Automation Letters, 2023.
  19. A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Robotics: science and systems, vol. 2, no. 4.   Seattle, WA, 2009, p. 435.
  20. X. Li, H. Zhang, and W. Chen, “4D radar-based pose graph slam with ego-velocity pre-integration factor,” IEEE Robotics and Automation Letters, 2023.
  21. M. Magnusson, “The three-dimensional normal-distributions transform: an efficient representation for registration, surface analysis, and loop detection,” Ph.D. dissertation, Örebro universitet, 2009.
  22. P. Ram and K. Sinha, “Revisiting kd-tree for nearest neighbor search,” in Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining, 2019, pp. 1378–1388.
  23. A. Maćkiewicz and W. Ratajczak, “Principal components analysis (PCA),” Computers & Geosciences, vol. 19, no. 3, pp. 303–342, 1993.
  24. T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 4758–4765.
  25. C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós, “Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1874–1890, 2021.
  26. M. Choi, S. Yang, S. Han, Y. Lee, M. Lee, K. H. Choi, and K.-S. Kim, “MSC-RAD4R: Ros-based automotive dataset with 4D radar,” IEEE Robotics and Automation Letters, 2023.
  27. M. Grupp, “evo: Python package for the evaluation of odometry and slam.” https://github.com/MichaelGrupp/evo, 2017.
  28. J. Zhang, H. Zhuge, Y. Liu, G. Peng, Z. Wu, H. Zhang, Q. Lyu, H. Li, C. Zhao, D. Kircali, et al., “Ntu4dradlm: 4d radar-centric multi-modal dataset for localization and mapping,” in 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2023, pp. 4291–4296.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xiaoyi Wu (8 papers)
  2. Yushuai Chen (3 papers)
  3. Zhan Li (59 papers)
  4. Ziyang Hong (13 papers)
  5. Liang Hu (64 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.