Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Continuous Integration Skip : A Reinforcement Learning-based Approach (2405.09657v1)

Published 15 May 2024 in cs.SE and cs.AI

Abstract: The software industry is experiencing a surge in the adoption of Continuous Integration (CI) practices, both in commercial and open-source environments. CI practices facilitate the seamless integration of code changes by employing automated building and testing processes. Some frameworks, such as Travis CI and GitHub Actions have significantly contributed to simplifying and enhancing the CI process, rendering it more accessible and efficient for development teams. Despite the availability these CI tools , developers continue to encounter difficulties in accurately flagging commits as either suitable for CI execution or as candidates for skipping especially for large projects with many dependencies. Inaccurate flagging of commits can lead to resource-intensive test and build processes, as even minor commits may inadvertently trigger the Continuous Integration process. The problem of detecting CI-skip commits, can be modeled as binary classification task where we decide to either build a commit or to skip it. This study proposes a novel solution that leverages Deep Reinforcement Learning techniques to construct an optimal Decision Tree classifier that addresses the imbalanced nature of the data. We evaluate our solution by running a within and a cross project validation benchmark on diverse range of Open-Source projects hosted on GitHub which showcased superior results when compared with existing state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.