Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unleashing cosmic shear information with the tomographic weak lensing PDF (2405.09651v2)

Published 15 May 2024 in astro-ph.CO

Abstract: In this work, we demonstrate the constraining power of the tomographic weak lensing convergence PDF for StageIV-like source galaxy redshift bins and shape noise. We focus on scales of $10$ to $20$ arcmin in the mildly nonlinear regime, where the convergence PDF and its changes with cosmological parameters can be predicted theoretically. We model the impact of reconstructing the convergence from the shear field using the well-known Kaiser-Squires formalism. We cross-validate the predicted and the measured convergence PDF derived from convergence maps reconstructed using simulated shear catalogues. Employing a Fisher forecast, we determine the constraining power for $(\Omega_{m},S_{8},w_{0})$. We find that adding a 5-bin tomography improves the $\kappa-$PDF constraints by a factor of ${3.8,1.3,1.6}$ for $(\Omega_{m}, S_{8},w_{0})$ respectively. Additionally, we perform a joint analysis with the shear two-point correlation functions, finding an enhancement of around a factor of $1.5$ on all parameters with respect to the two-point statistics alone. These improved constraints come from disentangling $\Omega_{\rm m}$ from $w_0$ by extracting non-Gaussian information, in particular, including the PDF skewness at different redshift bins. We also study the effect of varying the number of parameters to forecast, in particular we add $h$, finding that the convergence PDF maintains its constraining power while the precision from two-point correlations degrades by a factor of ${1.7,1.4,1.8}$ for ${\Omega_{\rm m},S_8,w_0}$, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. R. Laureijs et al. (EUCLID),   (2011), arXiv:1110.3193 [astro-ph.CO] .
  2. Željko Ivezić et al., The Astrophysical Journal 873, 111 (2019).
  3. O. Doré et al. (SPHEREx),   (2014), arXiv:1412.4872 [astro-ph.CO] .
  4. A. Aghamousa et al. (DESI),   (2016), arXiv:1611.00036 [astro-ph.IM] .
  5. D. Spergel et al.,   (2015), arXiv:1503.03757 [astro-ph.IM] .
  6. M. Kilbinger, Rept. Prog. Phys. 78, 086901 (2015), arXiv:1411.0115 [astro-ph.CO] .
  7. N. Kaiser and G. Squires, Astrophys. J. 404, 441 (1993).
  8. M. Bartelmann and P. Schneider, Astron. Astrophys. 345, 17 (1999), arXiv:astro-ph/9902152 .
  9. J. Liu and M. S. Madhavacheril, Phys. Rev. D 99, 083508 (2019), arXiv:1809.10747 [astro-ph.CO] .
  10. M. Kilbinger et al., Mon. Not. Roy. Astron. Soc. 430, 2200 (2013), arXiv:1212.3338 [astro-ph.CO] .
  11. M. Asgari et al. (KiDS), Astron. Astrophys. 645, A104 (2021), arXiv:2007.15633 [astro-ph.CO] .
  12. A. Amon et al. (DES), Phys. Rev. D 105, 023514 (2022), arXiv:2105.13543 [astro-ph.CO] .
  13. C. Doux et al. (DES), Mon. Not. Roy. Astron. Soc. 515, 1942 (2022), arXiv:2203.07128 [astro-ph.CO] .
  14. Y. Mellier et al., Euclid: 1. Overview of the Euclid mission  (2024).
  15. L. Van Waerbeke et al., Mon. Not. Roy. Astron. Soc. 433, 3373 (2013), arXiv:1303.1806 [astro-ph.CO] .
  16. L. Porth and R. E. Smith, Mon. Not. Roy. Astron. Soc. 508, 3474 (2021), arXiv:2106.04594 [astro-ph.CO] .
  17. M. Gatti et al. (DES), Phys. Rev. D 109, 063534 (2024), arXiv:2310.17557 [astro-ph.CO] .
  18. J. P. Dietrich and J. Hartlap, Mon. Not. Roy. Astron. Soc. 402, 1049 (2010), arXiv:0906.3512 [astro-ph.CO] .
  19. T. Kacprzak et al. (DES), Mon. Not. Roy. Astron. Soc. 463, 3653 (2016), arXiv:1603.05040 [astro-ph.CO] .
  20. N. Martinet et al., Mon. Not. Roy. Astron. Soc. 474, 712 (2018), arXiv:1709.07678 [astro-ph.CO] .
  21. D. Zürcher et al. (DES), Mon. Not. Roy. Astron. Soc. 511, 2075 (2022), arXiv:2110.10135 [astro-ph.CO] .
  22. S. Cheng and B. Ménard, Mon. Not. Roy. Astron. Soc. 507, 1012 (2021), arXiv:2103.09247 [astro-ph.CO] .
  23. V. Ajani et al. (Euclid), Astron. Astrophys. 675, A120 (2023b), arXiv:2301.12890 [astro-ph.CO] .
  24. F. Bernardeau and P. Reimberg, Phys. Rev. D 94, 063520 (2016), arXiv:1511.08641 [astro-ph.CO] .
  25. C. Uhlemann et al., Mon. Not. Roy. Astron. Soc. 473, 5098 (2018a), arXiv:1705.08901 [astro-ph.CO] .
  26. A. Gough and C. Uhlemann, Universe 8, 55 (2022), arXiv:2112.04428 [astro-ph.CO] .
  27. O. Friedrich et al. (DES), Phys. Rev. D 98, 023508 (2018), arXiv:1710.05162 [astro-ph.CO] .
  28. D. Gruen et al. (DES), Phys. Rev. D 98, 023507 (2018), arXiv:1710.05045 [astro-ph.CO] .
  29. P. A. Burger et al., Astron. Astrophys. 669, A69 (2023), arXiv:2208.02171 [astro-ph.CO] .
  30. P. Valageas, Astron. Astrophys. 382, 412 (2002), arXiv:astro-ph/0107126 .
  31. F. Bernardeau and P. Valageas, Astron. Astrophys. 364, 1 (2000), arXiv:astro-ph/0006270 .
  32. N. Kaiser, Astrophys. J. 388, 272 (1992).
  33. J. Harnois-Déraps et al., Mon. Not. Roy. Astron. Soc. 481, 1337 (2018), arXiv:1805.04511 [astro-ph.CO] .
  34. L. Thiele, G. A. Marques, J. Liu,  and M. Shirasaki, “Cosmological constraints from hsc y1 lensing convergence pdf,”  (2023), arXiv:2304.05928 [astro-ph.CO] .
  35. L. Clerkin et al. (DES), Mon. Not. Roy. Astron. Soc. 466, 1444 (2017), arXiv:1605.02036 [astro-ph.CO] .
  36. S. Bridle and L. King, New J. Phys. 9, 444 (2007), arXiv:0705.0166 [astro-ph] .
  37. N. Jeffrey et al. (DES), Mon. Not. Roy. Astron. Soc. 505, 4626 (2021), arXiv:2105.13539 [astro-ph.CO] .
  38. M. Gatti et al. (DES), Phys. Rev. D 106, 083509 (2022), arXiv:2110.10141 [astro-ph.CO] .
  39. G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 208, 19 (2013), arXiv:1212.5226 [astro-ph.CO] .
  40. F. Villaescusa-Navarro, “Pylians: Python libraries for the analysis of numerical simulations,” Astrophysics Source Code Library, record ascl:1811.008 (2018), ascl:1811.008 .
  41. M. Jarvis, “TreeCorr: Two-point correlation functions,” Astrophysics Source Code Library, record ascl:1508.007 (2015).
  42. N. E. Chisari et al. (LSST Dark Energy Science), Astrophys. J. Suppl. 242, 2 (2019), arXiv:1812.05995 [astro-ph.CO] .
  43. D. Coe,   (2009), arXiv:0906.4123 [astro-ph.IM] .
  44. F. Bernardeau, Astron. Astrophys. 291, 697 (1994), arXiv:astro-ph/9403020 .
  45. S. Dodelson and M. D. Schneider, Phys. Rev. D 88, 063537 (2013), arXiv:1304.2593 [astro-ph.CO] .
  46. E. Sellentin and A. F. Heavens, Mon. Not. Roy. Astron. Soc. 456, L132 (2016), arXiv:1511.05969 [astro-ph.CO] .
  47. A. Dembo and O. Zeitouni, Large deviations techniques and applications, Vol. 38 (Springer Science & Business Media, 2009).
  48. F. Bernardeau, Astrophys. J. 392, 1 (1992).
  49. F. Bernardeau, Astron. Astrophys. 301, 309 (1995), arXiv:astro-ph/9502089 .
  50. J. Peacock and R. Smith, Astrophysics source code library , ascl (2014).
  51. O. Friedrich and T. Eifler, MNRAS 473, 4150 (2018), arXiv:1703.07786 [astro-ph.IM] .

Summary

We haven't generated a summary for this paper yet.