Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

Quantum Geometry and Stabilization of Fractional Chern Insulators Far from the Ideal Limit (2405.09627v2)

Published 15 May 2024 in cond-mat.str-el and cond-mat.mes-hall

Abstract: In the presence of strong electronic interactions, a partially filled Chern band may stabilize a fractional Chern insulator (FCI) state, the zero-field analog of the fractional quantum Hall phase. While FCIs have long been hypothesized, feasible solid-state realizations only recently emerged, largely due to the rise of moir\'e materials. In these systems, the quantum geometry of the electronic bands plays a critical role in stabilizing the FCI in the presence of competing correlated phases. In the limit of ``ideal'' quantum geometry, where the quantum geometry is identical to that of Landau levels, this role is well understood. However, in more realistic scenarios only empiric numerical evidence exists, accentuating the need for a clear understanding of the mechanism by which the FCI deteriorates moving further away from these ideal conditions. We introduce and analyze an anisotropic model of a $\left|C \right|=1$ Chern insulator, whereupon partial filling of its bands, an FCI phase is stabilized over a certain parameter regime. We incorporate strong electronic interaction analytically by employing a coupled-wires approach, studying the FCI stability and its relation to the the quantum metric. We identify an unusual anti-FCI phase benefiting from non-ideal geometry, generically subdominant to the FCI. However, its presence hinders the formation of FCI in favor of other competitive phases at fractional fillings, such as the charge density wave. Though quite peculiar, this anti-FCI phase may have already been observed in experiments at high magnetic fields. This establish a direct link between quantum geometry and FCI stability in a tractable model far from any ideal band conditions, and illuminates a unique mechanism of FCI deterioration.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011).
  2. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
  3. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
  4. F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
  5. H. L. Stormer, Rev. Mod. Phys. 71, 875 (1999).
  6. B. I. Halperin and J. K. Jain, Fractional Quantum Hall Effects (WORLD SCIENTIFIC, 2020) https://www.worldscientific.com/doi/pdf/10.1142/11751 .
  7. T. S. Jackson, G. Möller, and R. Roy, Nature Communications 6, 8629 (2015a).
  8. R. Roy, Phys. Rev. B 90, 165139 (2014).
  9. S. A. Trugman and S. Kivelson, Phys. Rev. B 31, 5280 (1985).
  10. F. D. M. Haldane, Phys. Rev. Lett. 107, 116801 (2011).
  11. P. J. Ledwith, A. Vishwanath, and D. E. Parker, Phys. Rev. B 108, 205144 (2023).
  12. S. H. Simon and M. S. Rudner, Phys. Rev. B 102, 165148 (2020).
  13. C. L. Kane, R. Mukhopadhyay, and T. C. Lubensky, Phys. Rev. Lett. 88, 036401 (2002).
  14. J. C. Y. Teo and C. L. Kane, Phys. Rev. B 89, 085101 (2014).
  15. E. Sagi and Y. Oreg, Phys. Rev. B 90, 201102 (2014).
  16. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006), https://www.science.org/doi/pdf/10.1126/science.1133734 .
  17. S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev. B 33, 2481 (1986).
  18. N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
  19. The construction presented here differs significantly from that of Ref. [31], where the amplitude of an alternating magnetic field determines the effective filling factor.
  20. T. Giamarchi and O. U. Press, Quantum Physics in One Dimension, International Series of Monogr (Clarendon Press, 2004).
  21. J. Voit, Reports on Progress in Physics 58, 977 (1995).
  22. F. D. M. Haldane, Journal of Physics C: Solid State Physics 14, 2585 (1981).
  23. C.-H. Hsu, D. Loss, and J. Klinovaja, Phys. Rev. B 108, L121409 (2023).
  24. R. Tao and D. J. Thouless, Phys. Rev. B 28, 1142 (1983).
  25. A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Phys. Rev. Lett. 76, 499 (1996).
  26. M. M. Fogler, A. A. Koulakov, and B. I. Shklovskii, Phys. Rev. B 54, 1853 (1996).
  27. A. Vishwanath and D. Carpentier, Phys. Rev. Lett. 86, 676 (2001).
  28. R. Mukhopadhyay, C. L. Kane, and T. C. Lubensky, Phys. Rev. B 64, 045120 (2001).
  29. J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge Lecture Notes in Physics (Cambridge University Press, 1996).
  30. T. Giamarchi, Phys. Rev. B 44, 2905 (1991).
  31. V. Crépel and L. Fu, Phys. Rev. B 107, L201109 (2023).
  32. S. A. Parameswaran, R. Roy, and S. L. Sondhi, Phys. Rev. B 85, 241308 (2012).
  33. T. S. Jackson, G. Möller, and R. Roy, Nature Communications 6, 8629 (2015b).
  34. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).
  35. G. Shavit and Y. Oreg, Phys. Rev. Res. 2, 043283 (2020).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com