2000 character limit reached
Single Kerr-Schild Metric for Taub-NUT Instanton (2405.09518v4)
Published 15 May 2024 in hep-th and gr-qc
Abstract: It is shown that a complex coordinate transformation maps the Taub-NUT instanton metric to a Kerr-Schild metric. This metric involves a semi-infinite line defect as the gravitational analog of the Dirac string, much like the original metric. Moreover, it facilitates three versions of classical double copy correspondence with the self-dual dyon in electromagnetism, one of which involving a nonlocal operator. The relevance to the Newman-Janis algorithm is briefly noted.
- R. Monteiro, D. O’Connell, and C. D. White, “Black holes and the double copy,” Journal of High Energy Physics 2014 no. 12, (2014) 1–23.
- A. Luna, R. Monteiro, I. Nicholson, and D. O’Connell, “Type D spacetimes and the Weyl double copy,” Classical and Quantum Gravity 36 no. 6, (2019) 065003.
- E. Chacón, S. Nagy, and C. D. White, “The Weyl double copy from twistor space,” Journal of High Energy Physics 2021 no. 5, (2021) 1–40.
- C. D. White, “Twistorial foundation for the classical double copy,” Physical Review Letters 126 no. 6, (2021) 061602.
- A. Luna, N. Moynihan, and C. D. White, “Why is the Weyl double copy local in position space?,” JHEP 12 (2022) 046, arXiv:2208.08548 [hep-th].
- A. Luna, R. Monteiro, D. O’Connell, and C. D. White, “The classical double copy for Taub–NUT spacetime,” Phys. Lett. B 750 (2015) 272–277, arXiv:1507.01869 [hep-th].
- D. S. Berman, E. Chacón, A. Luna, and C. D. White, “The self-dual classical double copy, and the Eguchi-Hanson instanton,” JHEP 01 (2019) 107, arXiv:1809.04063 [hep-th].
- G. Elor, K. Farnsworth, M. L. Graesser, and G. Herczeg, “The Newman-Penrose map and the classical double copy,” Journal of High Energy Physics 2020 no. 12, (2020) 1–37.
- I. Bah, R. Dempsey, and P. Weck, “Kerr-Schild double copy and complex worldlines,” Journal of High Energy Physics 2020 no. 2, (2020) 1–34.
- M. Carrillo González, B. Melcher, K. Ratliff, S. Watson, and C. D. White, “The classical double copy in three spacetime dimensions,” JHEP 07 (2019) 167, arXiv:1904.11001 [hep-th].
- M. Carrillo-González, R. Penco, and M. Trodden, “The classical double copy in maximally symmetric spacetimes,” JHEP 04 (2018) 028, arXiv:1711.01296 [hep-th].
- R. Monteiro, D. O’Connell, D. Peinador Veiga, and M. Sergola, “Classical solutions and their double copy in split signature,” JHEP 05 (2021) 268, arXiv:2012.11190 [hep-th].
- R. Monteiro, S. Nagy, D. O’Connell, D. Peinador Veiga, and M. Sergola, “NS-NS spacetimes from amplitudes,” JHEP 06 (2022) 021, arXiv:2112.08336 [hep-th].
- N. Bahjat-Abbas, A. Luna, and C. D. White, “The Kerr-Schild double copy in curved spacetime,” JHEP 12 (2017) 004, arXiv:1710.01953 [hep-th].
- A. Banerjee, E. O. Colgáin, J. A. Rosabal, and H. Yavartanoo, “Ehlers as EM duality in the double copy,” Phys. Rev. D 102 (2020) 126017, arXiv:1912.02597 [hep-th].
- L. Alfonsi, C. D. White, and S. Wikeley, “Topology and Wilson lines: global aspects of the double copy,” JHEP 07 (2020) 091, arXiv:2004.07181 [hep-th].
- R. Monteiro and D. O’Connell, “The kinematic algebra from the self-dual sector,” Journal of High Energy Physics 2011 no. 7, (2011) 1–24.
- H. Kawai, D. C. Lewellen, and S. H. H. Tye, “A Relation Between Tree Amplitudes of Closed and Open Strings,” Nucl. Phys. B 269 (1986) 1–23.
- Z. Bern, J. J. M. Carrasco, and H. Johansson, “Perturbative Quantum Gravity as a Double Copy of Gauge Theory,” Phys. Rev. Lett. 105 (2010) 061602, arXiv:1004.0476 [hep-th].
- Z. Bern, T. Dennen, Y.-t. Huang, and M. Kiermaier, “Gravity as the Square of Gauge Theory,” Phys. Rev. D 82 (2010) 065003, arXiv:1004.0693 [hep-th].
- Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, and R. Roiban, “The duality between color and kinematics and its applications,” arXiv:1909.01358 [hep-th].
- N. Arkani-Hamed, Y.-t. Huang, and D. O’Connell, “Kerr black holes as elementary particles,” JHEP 01 (2020) 046, arXiv:1906.10100 [hep-th].
- A. H. Taub, “Empty space-times admitting a three parameter group of motions,” Annals Math. 53 (1951) 472–490.
- E. Newman, L. Tamburino, and T. Unti, “Empty space generalization of the Schwarzschild metric,” J. Math. Phys. 4 (1963) 915.
- C. W. Misner, “The Flatter regions of Newman, Unti and Tamburino’s generalized Schwarzschild space,” J. Math. Phys. 4 (1963) 924–938.
- W. B. Bonnor, “A new interpretation of the NUT metric in general relativity,” Math. Proc. Cambridge Phil. Soc. 66 no. 1, (1969) 145–151.
- A. Sackfield, “Physical interpretation of NUT metric,” in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 70, pp. 89–94, Cambridge University Press. 1971.
- J. Dowker and J. Roche, “The gravitational analogues of magnetic monopoles,” Proceedings of the Physical Society (1958-1967) 92 no. 1, (1967) 1.
- Y. Cho, “Magnetic theory of gravitation,” in Primordial Nucleosynthesis and Evolution of Early Universe, pp. 203–211. Springer, 1991.
- J. Samuel and B. Iyer, “A gravitational analog of the Dirac monopole,” Current Science (1986) 818–824.
- R. Maartens and B. A. Bassett, “Gravito-electromagnetism,” Classical and Quantum Gravity 15 no. 3, (1998) 705.
- J. F. Plebański, “A class of solutions of Einstein-Maxwell equations,” Annals Phys. 90 no. 1, (1975) 196–255.
- Z. W. Chong, G. W. Gibbons, H. Lu, and C. N. Pope, “Separability and killing tensors in Kerr-Taub-NUT-de sitter metrics in higher dimensions,” Phys. Lett. B 609 (2005) 124–132, arXiv:hep-th/0405061.
- S. W. Hawking, “Gravitational instantons,” Physics Letters A 60 no. 2, (1977) 81–83.
- G. W. Gibbons and S. W. Hawking, “Gravitational Multi-Instantons,” Phys. Lett. B 78 (1978) 430.
- T. Adamo, G. Bogna, L. Mason, and A. Sharma, “Scattering on self-dual Taub-NUT,” arXiv:2309.03834 [hep-th].
- A. Guevara and U. Kol, “Self Dual Black Holes as the Hydrogen Atom,” arXiv:2311.07933 [hep-th].
- E. Crawley, A. Guevara, N. Miller, and A. Strominger, “Black holes in Klein space,” JHEP 10 (2022) 135, arXiv:2112.03954 [hep-th].
- E. Crawley, A. Guevara, E. Himwich, and A. Strominger, “Self-dual black holes in celestial holography,” JHEP 09 (2023) 109, arXiv:2302.06661 [hep-th].
- G. W. Gibbons and P. J. Ruback, “The Hidden Symmetries of Taub-NUT and Monopole Scattering,” Phys. Lett. B 188 (1987) 226.
- G. W. Gibbons and P. J. Ruback, “The Hidden Symmetries of Multicenter Metrics,” Commun. Math. Phys. 115 (1988) 267.
- P. A. M. Dirac, “Quantised singularities in the electromagnetic field,,” Proc. Roy. Soc. Lond. A 133 no. 821, (1931) 60–72.
- P. A. M. Dirac, “The Theory of magnetic poles,” Phys. Rev. 74 (1948) 817–830.
- J. Vines, “Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings,” Classical and Quantum Gravity 35 no. 8, (2018) 084002.
- A. Guevara, “Reconstructing Classical Spacetimes from the S-Matrix in Twistor Space,” arXiv:2112.05111 [hep-th].
- R. Penrose and W. Rindler, “Spinors and space-time: Volume 2, spinor and twistor methods in space-time geometry,”.
- M. Walker and R. Penrose, “On quadratic first integrals of the geodesic equations for type [22] spacetimes,” Commun. Math. Phys. 18 (1970) 265–274.
- L. P. Hughston, R. Penrose, P. Sommers, and M. Walker, “On a quadratic first integral for the charged particle orbits in the charged kerr solution,” Commun. Math. Phys. 27 (1972) 303–308.
- L. P. Hughston and P. Sommers, “Spacetimes with killing tensors,” Communications in Mathematical Physics 32 (1973) 147–152.
- D. Zwanziger, “Local Lagrangian quantum field theory of electric and magnetic charges,” Phys. Rev. D 3 (1971) 880.
- F. V. Gubarev, M. I. Polikarpov, and V. I. Zakharov, “Monopole - anti-monopole interaction in Abelian Higgs model,” Phys. Lett. B 438 (1998) 147–153, arXiv:hep-th/9805175.
- Y. Shnir, “Magnetic monopoles,” Phys. Part. Nucl. Lett. 8 (2011) 749–754.
- J. Terning and C. B. Verhaaren, “Spurious Poles in the Scattering of Electric and Magnetic Charges,” JHEP 12 (2020) 153, arXiv:2010.02232 [hep-th].
- N. Moynihan and J. Murugan, “On-shell electric-magnetic duality and the dual graviton,” Phys. Rev. D 105 no. 6, (2022) 066025, arXiv:2002.11085 [hep-th].
- E. T. Newman and A. I. Janis, “Note on the Kerr spinning particle metric,” J. Math. Phys. 6 (1965) 915–917.
- Technically, this holds off the Dirac string or when the Dirac string is hidden.
- J. F. Plebanski, “Some solutions of complex einstein equations,” Journal of Mathematical Physics 16 no. 12, (1975) 2395–2402.
- J. F. Plebanski, “On the separation of Einsteinian substructures,” J. Math. Phys. 18 (1977) 2511–2520.
- E. T. Newman, “The Bondi-Metzner-Sachs group: Its complexification and some related curious consequences,” in General relativity and gravitation: proceedings of the seventh international conference (GR7), Tel-Aviv University, June 23-28, 1974, Shaviv, Giora and Rosen, Joseph, Relativity and Gravitation, 1975 (1975) .
- E. T. Newman, “Heaven and its properties,” General Relativity and Gravitation 7 no. 1, (1976) 107–111.
- H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A 269 (1962) 21–52.
- R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,” Proc. Roy. Soc. Lond. A 270 (1962) 103–126.
- A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory.” no note, 3, 2017.
- H. Godazgar, M. Godazgar, and C. N. Pope, “Dual gravitational charges and soft theorems,” JHEP 10 (2019) 123, arXiv:1908.01164 [hep-th].
- H. Godazgar, M. Godazgar, and C. N. Pope, “Taub-NUT from the Dirac monopole,” Phys. Lett. B 798 (2019) 134938, arXiv:1908.05962 [hep-th].
- T. T. Wu and C. N. Yang, “Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields,” Phys. Rev. D 12 (1975) 3845–3857.
- Note that repositioning the string commutes with the double copy: the single copy of Eq. (10) exactly describes the SDD with north-pointing Dirac string.
- defined as a constant since the spacetime is stationary
- Note that ξ~¯≠ξ¯~𝜉𝜉\bar{{\tilde{\xi}}}\neq\xiover¯ start_ARG over~ start_ARG italic_ξ end_ARG end_ARG ≠ italic_ξ.
- D. Tong, “Gauge theory,” Lecture notes, DAMTP Cambridge 10 (2018) .
- C. Cheung, M. Derda, J.-H. Kim, V. Nevoa, I. Rothstein, and N. Shah, “Generalized Symmetry in Dynamical Gravity,” arXiv:2403.01837 [hep-th].
- J. Sakurai, “Comments on quantum-mechanical interference due to the earth’s rotation,” Physical Review D 21 no. 10, (1980) 2993.
- R. L. Zimmerman and B. Y. Shahir, “Geodesics for the NUT metric and gravitational monopoles,” General relativity and gravitation 21 no. 8, (1989) 821–848.
- To understand this quickly, note that the Coriolis force 2mv→×ω→2𝑚→𝑣→𝜔2m\vec{v}{\,\times\hskip 1.00006pt}\vec{\omega}2 italic_m over→ start_ARG italic_v end_ARG × over→ start_ARG italic_ω end_ARG is analogous to the Lorentz force qv→×B→𝑞→𝑣→𝐵q\vec{v}{\,\times}\smash{\vec{B}}italic_q over→ start_ARG italic_v end_ARG × over→ start_ARG italic_B end_ARG [72].
- In this sense the “field strength” of gravity is torsion: note that Eq. (13) can be interpreted as the torsion two-form generated by the multivalued diffeomorphism (ddxμ=Γμdνρxρ∧dxν=12Tμdρσxρ∧dxσ𝑑𝑑superscript𝑥𝜇superscriptΓ𝜇subscript𝑑𝜈𝜌superscript𝑥𝜌𝑑superscript𝑥𝜈12superscript𝑇𝜇subscript𝑑𝜌𝜎superscript𝑥𝜌𝑑superscript𝑥𝜎ddx^{\mu}=\Gamma^{\mu}{}_{\nu\rho}\hskip 1.00006ptdx^{\rho}{\hskip 1.00006pt{% \wedge}\,}dx^{\nu}=\frac{1}{2}\hskip 1.00006ptT^{\mu}{}_{\rho\sigma}\hskip 1.0% 0006ptdx^{\rho}{\hskip 1.00006pt{\wedge}\,}dx^{\sigma}italic_d italic_d italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT = roman_Γ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT italic_ν italic_ρ end_FLOATSUBSCRIPT italic_d italic_x start_POSTSUPERSCRIPT italic_ρ end_POSTSUPERSCRIPT ∧ italic_d italic_x start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_T start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT italic_ρ italic_σ end_FLOATSUBSCRIPT italic_d italic_x start_POSTSUPERSCRIPT italic_ρ end_POSTSUPERSCRIPT ∧ italic_d italic_x start_POSTSUPERSCRIPT italic_σ end_POSTSUPERSCRIPT) [131, 132, 133]. This might be suggesting a realization of color-kinematics duality in terms of Einstein-Cartan theory or teleparallel gravity.
- W. Israel, “Source of the Kerr metric,” Physical Review D 2 no. 4, (1970) 641.
- H. Balasin and H. Nachbagauer, “Distributional energy momentum tensor of the Kerr-Newman space-time family,” Class. Quant. Grav. 11 (1994) 1453–1462, arXiv:gr-qc/9312028.
- H. Balasin and H. Nachbagauer, “The energy-momentum tensor of a black hole, or what curves the Schwarzschild geometry?,” Class. Quant. Grav. 10 (1993) 2271, arXiv:gr-qc/9305009.
- Given the GSF condition, the Kerr-Schild “graviton field” decomposes as gμν−ημν=ϕℓμℓν=hμνL+ 2m∂(μξν)g_{\mu\nu}{\,-\,}\eta_{\mu\nu}=\phi\hskip 1.00006pt\ell_{\mu}\ell_{\nu}=\smash% {{}^{\text{L}}\kern-0.50003pth_{\mu\nu}}{\,+\,}2m\hskip 1.00006pt\partial_{% \smash{(\mu}\vphantom{\mu}}\xi_{\smash{\nu)}\vphantom{\nu}}italic_g start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT - italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT = italic_ϕ roman_ℓ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT = start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT + 2 italic_m ∂ start_POSTSUBSCRIPT ( italic_μ end_POSTSUBSCRIPT italic_ξ start_POSTSUBSCRIPT italic_ν ) end_POSTSUBSCRIPT with h¯μνL=2u(μ(Aν)L)\smash{{}^{\text{L}}\kern-0.50003pt\bar{h}^{\mu\nu}}=\smash{2u^{(\mu}(\smash{{% }^{\text{L}}\kern-0.50003ptA^{\nu)}})}start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT over¯ start_ARG italic_h end_ARG start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT = 2 italic_u start_POSTSUPERSCRIPT ( italic_μ end_POSTSUPERSCRIPT ( start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_ν ) end_POSTSUPERSCRIPT ) and ξμ=χuμ−(ℓμ−uμ)subscript𝜉𝜇𝜒subscript𝑢𝜇subscriptℓ𝜇subscript𝑢𝜇\xi_{\mu}=\chi\hskip 1.00006ptu_{\mu}-(\ell_{\mu}{\,-\,}u_{\mu})italic_ξ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT = italic_χ italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - ( roman_ℓ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ), provided that the single copy gauge potential is given in Kerr-Schild and Lorenz gauges as ϕℓμ=AμL+q∂μχitalic-ϕsubscriptℓ𝜇superscriptsubscript𝐴𝜇L𝑞subscript𝜇𝜒\phi\hskip 1.00006pt\ell_{\mu}=\smash{{}^{\text{L}}\kern-0.50003ptA_{\mu}}+q% \hskip 1.00006pt\partial_{\mu}\chiitalic_ϕ roman_ℓ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT = start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT italic_A start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT + italic_q ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_χ. Interestingly, the harmonic (Lorenz) gauge condition ∂ν(h¯μνL)=0subscript𝜈superscriptsuperscript¯ℎ𝜇𝜈L0\partial_{\nu}(\smash{{}^{\text{L}}\kern-0.50003pt\bar{h}^{\mu\nu}})=0∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT over¯ start_ARG italic_h end_ARG start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ) = 0 is satisfied, so ϕℓμℓνitalic-ϕsubscriptℓ𝜇subscriptℓ𝜈\phi\hskip 1.00006pt\ell_{\mu}\ell_{\nu}italic_ϕ roman_ℓ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT solves linearized Einstein’s equations with source TμνL:=12□(h¯μνL)=u(μ(□Aν)L)=u(μJν)\smash{{}^{\text{L}}\kern-0.50003ptT^{\mu\nu}}:={\textstyle\frac{1}{2}}\hskip 1% .00006pt\square(\smash{{}^{\text{L}}\kern-0.50003pt\bar{h}^{\mu\nu}})=\smash{u% ^{(\mu}(\square\smash{{}^{\text{L}}\kern-0.50003ptA}^{\nu)})}=\smash{u^{(\mu}J% ^{\nu)}}start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT italic_T start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT := divide start_ARG 1 end_ARG start_ARG 2 end_ARG □ ( start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT over¯ start_ARG italic_h end_ARG start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ) = italic_u start_POSTSUPERSCRIPT ( italic_μ end_POSTSUPERSCRIPT ( □ start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT italic_A start_POSTSUPERSCRIPT italic_ν ) end_POSTSUPERSCRIPT ) = italic_u start_POSTSUPERSCRIPT ( italic_μ end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT italic_ν ) end_POSTSUPERSCRIPT. In this sense TμνL=u(μJν)\smash{{}^{\text{L}}\kern-0.50003ptT^{\mu\nu}}=\smash{u^{(\mu}J^{\nu)}}start_FLOATSUPERSCRIPT L end_FLOATSUPERSCRIPT italic_T start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT = italic_u start_POSTSUPERSCRIPT ( italic_μ end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT italic_ν ) end_POSTSUPERSCRIPT could be identified as a source for the solution. We have been presuming stationary solutions with Killing vector uμ=δμ0u^{\mu}=\delta^{\mu}{}_{0}italic_u start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT = italic_δ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT and also assumed ℓμuμ=−1subscriptℓ𝜇superscript𝑢𝜇1\ell_{\mu}u^{\mu}=-1roman_ℓ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT = - 1, while overbar has denoted trace reversion. Note that this stress-energy tensor is consistent with the Kerr-Schild double copy, which states Jμ=−2T¯μ0J^{\mu}{\,=\,}-2\bar{T}^{\mu}{}_{0}italic_J start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT = - 2 over¯ start_ARG italic_T end_ARG start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT [10, 11].
- in the sense that T00superscript𝑇00T^{00}italic_T start_POSTSUPERSCRIPT 00 end_POSTSUPERSCRIPT vanishes
- Ref. [45] has half-Fourier transformed only the massless leg to the twistor space. See Ref. [134] for the possibility of half-Fourier transforming the massive legs as well.
- R. Penrose, “Solutions of the zero-rest-mass equations,” J. Math. Phys. 10 (1969) 38–39.
- M. Atiyah, M. Dunajski, and L. Mason, “Twistor theory at fifty: from contour integrals to twistor strings,” Proc. Roy. Soc. Lond. A 473 no. 2206, (2017) 20170530, arXiv:1704.07464 [hep-th].
- In particular, the Newman-Janis shift is essentially the same argument applied to the Kerr solution [36, 55, 126, 128, 1, 127], but concretely verifying that SDTN is the “self-dual part” of Kerr requires a nontrivial discussion [129, 130, 38, 117].
- A. I. Harte and J. Vines, “Generating exact solutions to Einstein’s equation using linearized approximations,” Phys. Rev. D 94 no. 8, (2016) 084009, arXiv:1608.04359 [gr-qc].
- B. C. Xanthopoulos, “Exact vacuum solutions of einstein’s equation from linearized solutions,” Journal of Mathematical Physics 19 no. 7, (1978) 1607–1609.
- This can be explicitly checked by noting that the ∂μℓνsubscript𝜇subscriptℓ𝜈\partial_{\mu}\ell_{\nu}∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT equation in the previous page is reproduced by a spinor equation ∂γγ˙o~α˙=(1/r)δγδ˙o~δ˙o~γ˙ι¯α˙subscript𝛾˙𝛾superscript~𝑜˙𝛼1𝑟subscript𝛿𝛾˙𝛿superscript~𝑜˙𝛿subscript~𝑜˙𝛾superscript¯𝜄˙𝛼\partial_{\smash{{\gamma}{\dot{{\gamma}}}}\vphantom{\beta}}\hskip 1.00006pt% \tilde{o}^{{\dot{\alpha}}}=(1/r)\hskip 1.00006pt\smash{\delta_{\smash{{\gamma}% {\dot{{\delta}}}}\vphantom{\beta}}\tilde{o}^{{\dot{{\delta}}}}\hskip 0.50003pt% \tilde{o}_{{\dot{{\gamma}}}}}\hskip 1.00006pt{\bar{\iota}}^{{\dot{\alpha}}}∂ start_POSTSUBSCRIPT italic_γ over˙ start_ARG italic_γ end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_o end_ARG start_POSTSUPERSCRIPT over˙ start_ARG italic_α end_ARG end_POSTSUPERSCRIPT = ( 1 / italic_r ) italic_δ start_POSTSUBSCRIPT italic_γ over˙ start_ARG italic_δ end_ARG end_POSTSUBSCRIPT over~ start_ARG italic_o end_ARG start_POSTSUPERSCRIPT over˙ start_ARG italic_δ end_ARG end_POSTSUPERSCRIPT over~ start_ARG italic_o end_ARG start_POSTSUBSCRIPT over˙ start_ARG italic_γ end_ARG end_POSTSUBSCRIPT over¯ start_ARG italic_ι end_ARG start_POSTSUPERSCRIPT over˙ start_ARG italic_α end_ARG end_POSTSUPERSCRIPT. Note also that the Goldberg-Sachs theorem [135, 136] implies they are GSF in the curved background as well.
- S. A. Huggett and K. P. Tod, An Introduction to Twistor Theory. London Mathematical Society Student Texts. Cambridge University Press, 2 ed., 1994.
- R. Penrose, “Twistor algebra,” Journal of Mathematical Physics 8 no. 2, (1967) 345–366.
- E. T. Newman, “Maxwell fields and shear-free null geodesic congruences,” Classical and Quantum Gravity 21 no. 13, (2004) 3197.
- This function can be written as iZ~Auμ(γμ)AI¯CBCZ~B𝑖superscript~𝑍Asubscript𝑢𝜇subscriptsuperscript𝛾𝜇Asuperscriptsubscript¯𝐼CBCsuperscript~𝑍Bi\hskip 1.00006pt\smash{\tilde{Z}}^{\mathrm{A}}\hskip 1.00006ptu_{\mu}(\gamma^% {\mu})_{\mathrm{A}}{}^{\mathrm{C}}\hskip 1.00006pt\bar{I}_{{\mathrm{C}}{% \mathrm{B}}}\hskip 1.00006pt\smash{\tilde{Z}}^{\mathrm{B}}italic_i over~ start_ARG italic_Z end_ARG start_POSTSUPERSCRIPT roman_A end_POSTSUPERSCRIPT italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ( italic_γ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT roman_A end_POSTSUBSCRIPT start_FLOATSUPERSCRIPT roman_C end_FLOATSUPERSCRIPT over¯ start_ARG italic_I end_ARG start_POSTSUBSCRIPT roman_CB end_POSTSUBSCRIPT over~ start_ARG italic_Z end_ARG start_POSTSUPERSCRIPT roman_B end_POSTSUPERSCRIPT, where I¯ABsubscript¯𝐼AB\bar{I}_{{\mathrm{A}}{\mathrm{B}}}over¯ start_ARG italic_I end_ARG start_POSTSUBSCRIPT roman_AB end_POSTSUBSCRIPT denotes infinity twistor.
- R. Penrose and G. A. J. Sparling, “The twistor quadrille,” Twistor Newsletter 1 (1976) 10–13.
- G. A. J. Sparling, “The non-linear graviton representing the analogue of schwarzschild or kerr black holes,” Twistor Newsletter 1 (1976) 14–17.
- Pitman, 1979.
- In this sense SDTN is a “square root” of Schwarzschild (not in the double copy sense, of course). Namely, SDTN is the “self-dual part” of Schwarzschild also at the level of GSF congruences. It would be interesting to experiment a further mix-and-match of null GSF congruences, such as one copy of SDTN congruence for the right-handed tensored with one copy of Robinson congruence for the left-handed.
- P. A. M. Dirac, “The theory of magnetic poles,” Physical Review 74 no. 7, (1948) 817.
- D. Zwanziger, “Quantum field theory of particles with both electric and magnetic charges,” Phys. Rev. 176 (1968) 1489–1495.
- This is the gravitational analog of “Gilbert-Ampère duality” described in footnote [95]. Note that a static gravitational dyon (m,−im)𝑚𝑖𝑚(m,-im)( italic_m , - italic_i italic_m ) is precisely described by Tμν=muμuνδ(3)(x→)superscript𝑇𝜇𝜈𝑚superscript𝑢𝜇superscript𝑢𝜈superscript𝛿3→𝑥T^{\mu\nu}=mu^{\mu}u^{\nu}\hskip 1.00006pt\delta^{(3)}(\vec{x})italic_T start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT = italic_m italic_u start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG ) and T⋆μν=−imuμuνδ(3)(x→)superscript𝑇⋆absent𝜇𝜈𝑖𝑚superscript𝑢𝜇superscript𝑢𝜈superscript𝛿3→𝑥T^{\star\mu\nu}=-imu^{\mu}u^{\nu}\hskip 1.00006pt\delta^{(3)}(\vec{x})italic_T start_POSTSUPERSCRIPT ⋆ italic_μ italic_ν end_POSTSUPERSCRIPT = - italic_i italic_m italic_u start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG ).
- Y.-T. Huang, U. Kol, and D. O’Connell, “Double copy of electric-magnetic duality,” Phys. Rev. D 102 no. 4, (2020) 046005, arXiv:1911.06318 [hep-th].
- W. T. Emond, Y.-T. Huang, U. Kol, N. Moynihan, and D. O’Connell, “Amplitudes from Coulomb to Kerr-Taub-NUT,” JHEP 05 (2022) 055, arXiv:2010.07861 [hep-th].
- N. Arkani-Hamed, T.-C. Huang, and Y.-t. Huang, “Scattering amplitudes for all masses and spins,” JHEP 11 (2021) 070, arXiv:1709.04891 [hep-th].
- Duff construction [140] from the Gilbertian linearized sources might be not straightforward by the failure of electric-magnetic duality due to the inherent nonlinearity of gravity [141]. Meanwhile, switching between the Ampèrian and Gilbertian pictures at the nonlinear level might be realized by the duality observed in Ref. [142].
- J. F. Plebanski and H. Garcia-Compean, “A q deformed version of the heavenly equations,” Int. J. Mod. Phys. A 10 (1995) 3371–3379, arXiv:hep-th/9405073.
- Q.-H. Park, “Selfdual Yang-Mills (+ gravity) as a 2-D sigma model,” Phys. Lett. B 257 (1991) 105–110.
- Q.-H. Park, “2-D sigma model approach to 4-D instantons,” Int. J. Mod. Phys. A 7 (1992) 1415–1448.
- V. Husain, “Selfdual gravity as a two-dimensional theory and conservation laws,” Class. Quant. Grav. 11 (1994) 927–938, arXiv:gr-qc/9310003.
- C. Cheung, J. Mangan, J. Parra-Martinez, and N. Shah, “Non-perturbative Double Copy in Flatland,” Phys. Rev. Lett. 129 no. 22, (2022) 221602, arXiv:2204.07130 [hep-th].
- K. Armstrong-Williams, C. D. White, and S. Wikeley, “Non-perturbative aspects of the self-dual double copy,” JHEP 08 (2022) 160, arXiv:2205.02136 [hep-th].
- Explicitly, it follows that Aαα˙=−2oα∂0α˙(qζ/4π)subscript𝐴𝛼˙𝛼2subscript𝑜𝛼subscript0˙𝛼𝑞𝜁4𝜋A_{\alpha{\dot{\alpha}}}=-2\hskip 1.00006pto_{\alpha}\partial_{0{\dot{\alpha}}% }(\hskip 0.50003pt{q\zeta/4\pi}\hskip 0.50003pt)italic_A start_POSTSUBSCRIPT italic_α over˙ start_ARG italic_α end_ARG end_POSTSUBSCRIPT = - 2 italic_o start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT 0 over˙ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ( italic_q italic_ζ / 4 italic_π ) and hαα˙ββ˙=4oαoβ∂0α˙∂0β˙(m(2r+z)ζ2/24π)subscriptℎ𝛼˙𝛼𝛽˙𝛽4subscript𝑜𝛼subscript𝑜𝛽subscript0˙𝛼subscript0˙𝛽𝑚2𝑟𝑧superscript𝜁224𝜋h_{\smash{\alpha{\dot{\alpha}}\beta{\dot{\beta}}}\vphantom{\beta}}=4\hskip 1.0% 0006pto_{\alpha}o_{\beta}\hskip 1.00006pt\partial_{\smash{0{\dot{\alpha}}}% \vphantom{\beta}}\partial_{\smash{0{\dot{\beta}}}\vphantom{\beta}}(\hskip 0.50% 003pt{m(2r{\,+\,}z)\hskip 1.00006pt\zeta^{2}/24\pi}\hskip 0.50003pt)italic_h start_POSTSUBSCRIPT italic_α over˙ start_ARG italic_α end_ARG italic_β over˙ start_ARG italic_β end_ARG end_POSTSUBSCRIPT = 4 italic_o start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_o start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT 0 over˙ start_ARG italic_α end_ARG end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT 0 over˙ start_ARG italic_β end_ARG end_POSTSUBSCRIPT ( italic_m ( 2 italic_r + italic_z ) italic_ζ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 24 italic_π ). Incorporating the nonabelian color structure seems to not solve the puzzle: as a diagnosis one can check whether the color Killing vector equation [143] in the single copy configuration is mapped to the Killing equation for gravity, but this turns out to be not the case. There is a difference in how the mass dimension increases by one when the gauge potential is mapped to the graviton field, between the self-dual double copy construction of the Eguchi-Hanson instanton in Ref. [7] and the double copy constructions of Taub-NUT instanton presented here. The former keeps the “matter coupling” (denoted λ𝜆\lambdaitalic_λ in Ref. [7]) the same while k^α˙=∂0α˙subscript^𝑘˙𝛼subscript0˙𝛼\smash{\hat{k}}_{\dot{\alpha}}=\partial_{0{\dot{\alpha}}}over^ start_ARG italic_k end_ARG start_POSTSUBSCRIPT over˙ start_ARG italic_α end_ARG end_POSTSUBSCRIPT = ∂ start_POSTSUBSCRIPT 0 over˙ start_ARG italic_α end_ARG end_POSTSUBSCRIPT imparts a mass dimension. However, the latter imparts the mass dimension by changing the matter coupling from q𝑞qitalic_q to m𝑚mitalic_m.
- T. Eguchi and A. J. Hanson, “Asymptotically flat selfdual solutions to euclidean gravity,” Phys. Lett. B 74 (1978) 249–251.
- T. Eguchi and A. J. Hanson, “Selfdual solutions to euclidean gravity,” Annals Phys. 120 (1979) 82.
- T. Eguchi and A. J. Hanson, “Gravitational instantons,” Gen. Rel. Grav. 11 (1979) 315–320.
- We thank Andres Luna for suggesting this direction.
- J.-H. Kim, “Spinning black holes and the Dirac string.” To appear.
- S. A. Teukolsky, “Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations,” Astrophys. J. 185 (1973) 635–647.
- W. H. Press and S. A. Teukolsky, “Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric,” Astrophys. J. 185 (1973) 649–674.
- M. Sasaki and H. Tagoshi, “Analytic black hole perturbation approach to gravitational radiation,” Living Rev. Rel. 6 (2003) 6, arXiv:gr-qc/0306120.
- S. Mano, H. Suzuki, and E. Takasugi, “Analytic solutions of the Teukolsky equation and their low frequency expansions,” Prog. Theor. Phys. 95 (1996) 1079–1096, arXiv:gr-qc/9603020.
- G. Bonelli, C. Iossa, D. P. Lichtig, and A. Tanzini, “Exact solution of Kerr black hole perturbations via CFT2 and instanton counting: Greybody factor, quasinormal modes, and Love numbers,” Phys. Rev. D 105 no. 4, (2022) 044047, arXiv:2105.04483 [hep-th].
- E. Poisson, A. Pound, and I. Vega, “The Motion of point particles in curved spacetime,” Living Rev. Rel. 14 (2011) 7, arXiv:1102.0529 [gr-qc].
- B. S. DeWitt and R. W. Brehme, “Radiation damping in a gravitational field,” Annals Phys. 9 (1960) 220–259.
- L. Barack and A. Ori, “Mode sum regularization approach for the selfforce in black hole space-time,” Phys. Rev. D 61 (2000) 061502, arXiv:gr-qc/9912010.
- E. T. Newman, “Maxwell’s equations and complex Minkowski space,” J. Math. Phys. 14 (1973) 102–103.
- E. T. Newman, “On a classical, geometric origin of magnetic moments, spin angular momentum and the Dirac gyromagnetic ratio,” Phys. Rev. D 65 (2002) 104005, arXiv:gr-qc/0201055.
- T. Adamo and E. T. Newman, “The Kerr-Newman metric: a review,” arXiv preprint arXiv:1410.6626 (2014) .
- D. J. Gross and M. J. Perry, “Magnetic Monopoles in Kaluza-Klein Theories,” Nucl. Phys. B 226 (1983) 29–48.
- A. M. Ghezelbash, R. B. Mann, and R. D. Sorkin, “The Disjointed thermodynamics of rotating black holes with a NUT twist,” Nucl. Phys. B 775 (2007) 95–119, arXiv:hep-th/0703030.
- P. Fiziev and H. Kleinert, “New action principle for classical particle trajectories in spaces with torsion,” EPL 35 (1996) 241–246, arXiv:hep-th/9503074.
- H. Kleinert and A. Pelster, “Autoparallels From a New Action Principle,” Gen. Rel. Grav. 31 (1999) 1439, arXiv:gr-qc/9605028.
- World Scientific, 2008.
- J.-H. Kim, “Asymptotic Spinspacetime,” arXiv:2309.11886 [hep-th].
- J. N. Goldberg and Sachs, “A theorem on Petrov types,” Acta Physica Polonica B, Proceedings Supplement 22 (1962) 13.
- E. Newman and R. Penrose, “An approach to gravitational radiation by a method of spin coefficients,” Journal of Mathematical Physics 3 no. 3, (1962) 566–578.
- D. J. Griffiths, Introduction to electrodynamics; 3rd ed. Prentice-Hall, Upper Saddle River, NJ, 1999. Chapter 6. Magnetic Fields in Matter.
- Z. Xu, D.-H. Zhang, and L. Chang, “Helicity Amplitudes for Multiple Bremsstrahlung in Massless Nonabelian Gauge Theories,” Nucl. Phys. B 291 (1987) 392–428.
- H. K. Dreiner, H. E. Haber, and S. P. Martin, “Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry,” Phys. Rept. 494 (2010) 1–196, arXiv:0812.1594 [hep-ph].
- M. J. Duff, “Quantum Tree Graphs and the Schwarzschild Solution,” Phys. Rev. D 7 (1973) 2317–2326.
- R. Monteiro, “No U(1) ’electric-magnetic’ duality in Einstein gravity,” arXiv:2312.02351 [hep-th].
- U. Kol and S.-T. Yau, “Duality in Gauge Theory, Gravity and String Theory,” arXiv:2311.07934 [hep-th].
- L. F. Abbott and S. Deser, “Charge definition in non-abelian gauge theories,” Physics Letters B 116 no. 4, (1982) 259–263.