Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Photonic Landau levels in a high-dimensional frequency-degenerate cavity (2405.09456v1)

Published 15 May 2024 in physics.optics

Abstract: Topological orders emerge in both microscopic quantum dynamics and macroscopic materials as a fundamental principle to characterize intricate properties in nature with vital significance, for instance, the Landau levels of electron systems in magnetic field. Whilst, recent advances of synthetic photonic systems enable generalized concepts of Landau levels across fermionic and bosonic systems, extending the modern physical frontier. However, the controls of Landau levels of photons were only confined in complex artificial metamaterials or multifolded cavities. Here, we exploit advanced structured light laser technology and propose the theory of high-dimensional frequency-degeneracy, which enables photonic Landau level control in a linear open laser cavity with simple displacement tuning of intracavity elements. This work not only create novel structured light with new topological effects but also provides broad prospects for Bose-analogue quantum Hall effects and topological physics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).
  2. Colloquium: topological insulators. Reviews of Modern Physics 82, 3045 (2010).
  3. Magnetic topological insulators. Nature Reviews Physics 1, 126–143 (2019).
  4. Quantum distance and anomalous landau levels of flat bands. Nature 584, 59–63 (2020).
  5. Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).
  6. Anyons in quantum hall interferometry. Nature Reviews Physics 3, 698–711 (2021).
  7. Uri, A. et al. Mapping the twist-angle disorder and landau levels in magic-angle graphene. Nature 581, 47–52 (2020).
  8. Mechanism for anomalous hall ferromagnetism in twisted bilayer graphene. Physical Review Letters 124, 166601 (2020).
  9. Topological quantum matter in synthetic dimensions. Nature Reviews Physics 1, 349–357 (2019).
  10. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature photonics 6, 782–787 (2012).
  11. Khanikaev, A. B. et al. Photonic topological insulators. Nature materials 12, 233–239 (2013).
  12. Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).
  13. Quantum fluids of light. Reviews of Modern Physics 85, 299 (2013).
  14. Dynamics of the berezinskii–kosterlitz–thouless transition in a photon fluid. Nature Photonics 14, 517–522 (2020).
  15. Landau level laser. Nature Photonics 15, 875–883 (2021).
  16. Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).
  17. Bandres, M. A. et al. Topological insulator laser: Experiments. Science 359, eaar4005 (2018).
  18. Goals and opportunities in quantum simulation. Nature physics 8, 264–266 (2012).
  19. Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic landau levels in dielectric structures. Nature Photonics 7, 153–158 (2013).
  20. Jamadi, O. et al. Direct observation of photonic landau levels and helical edge states in strained honeycomb lattices. Light: Science & Applications 9, 1–10 (2020).
  21. Devarakonda, A. et al. Signatures of bosonic landau levels in a finite-momentum superconductor. Nature 599, 51–56 (2021).
  22. Synthetic landau levels for photons. Nature 534, 671–675 (2016).
  23. Electromagnetic and gravitational responses of photonic landau levels. Nature 565, 173–179 (2019).
  24. Observation of Landau levels and chiral edge states in photonic crystals through pseudomagnetic fields induced by synthetic strain. Nature Photonics 1749–4893 (2024).
  25. Jia, N. et al. A strongly interacting polaritonic quantum dot. Nature Physics 14, 550–554 (2018).
  26. Clark, L. W. et al. Interacting floquet polaritons. Nature 571, 532–536 (2019).
  27. Observation of laughlin states made of light. Nature 582, 41–45 (2020).
  28. Corman, L. Light turned into exotic laughlin matter (2020).
  29. Orbital angular momentum lasers. Nature Reviews Physics 2522–5820 (2024).
  30. Fock, V. Bemerkung zur quantelung des harmonischen oszillators im magnetfeld. Zeitschrift für Physik 47, 446–448 (1928).
  31. Darwin, C. G. The diamagnetism of the free electron. In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 27, 86–90 (Cambridge University Press, 1931).
  32. Pan, J. et al. Index-tunable structured-light beams from a laser with an intracavity astigmatic mode converter. Physical Review Applied 14, 044048 (2020).
  33. Pan, J. et al. Multiaxial super-geometric mode laser. Optics Letters 48, 1630–1633 (2023).
  34. Exploring the effect of fractional degeneracy and the emergence of ray-wave duality in solid-state lasers with off-axis pumping. Physical Review A 88, 013827 (2013).
  35. Fractal frequency spectrum in laser resonators and three-dimensional geometric topology of optical coherent waves. Physical Review A 94, 023811 (2016).
  36. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica 7, 820–831 (2020).
  37. Shen, Y. Rays, waves, su (2) symmetry and geometry: toolkits for structured light. Journal of Optics 23, 124004 (2021).
  38. Laser transverse modes with ray-wave duality: a review. Applied Sciences 11, 8913 (2021).
  39. Structured light. Nature Photonics 15, 253–262 (2021).
  40. Towards higher-dimensional structured light. Light: Science & Applications 11, 205 (2022).
  41. Shen, Y. et al. Optical skyrmions and other topological quasiparticles of light. Nature Photonics 18, 15–25 (2024).
  42. Spontaneous pt-symmetry breaking in lasing dynamics. Communications Physics 4, 77 (2021).
  43. Arwas, G. et al. Anyonic-parity-time symmetry in complex-coupled lasers. Science advances 8, eabm7454 (2022).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com