Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study of charged Lepton Flavor Violation in electron muon interactions (2405.09417v4)

Published 15 May 2024 in hep-ex and hep-ph

Abstract: With the improvement of muon acceleration technology, it has received great interest to exploit high-energy muon beams for collision or target experiments. We investigate possible charged Lepton Flavor Violation (cLFV) processes mediated by an extra massive neutral gauge boson Zprime in electron muon interactions, either at a proposed electron muon collider or in a fixed target experiment with high-energy muon beam hitting electrons in the target. Based on Monte Carlo calculations and fast detector simulations, we study in detail our signal and possible backgrounds, giving the sensitivity results of cLFV signals at the 90% confidence level. Compared with current and prospective limits set by other experiments, electron muon interactions demonstrate significant advantages in the cLFV coupling strength sensitivity with tau in the final states. In addition, a special cLFV coupling combination, lambda_emu * lambda_mumu, can also be probed in our proposal.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. “High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V. 0.1,” vol. 4/2017, 2017.
  2. A. Abada et al., “FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1,” Eur. Phys. J. C, vol. 79, no. 6, p. 474, 2019.
  3. “CEPC Conceptual Design Report: Volume 1 - Accelerator,” 9 2018.
  4. M. Dong et al., “CEPC Conceptual Design Report: Volume 2 - Physics & Detector,” 11 2018.
  5. A. Abada et al., “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. ST, vol. 228, no. 2, pp. 261–623, 2019.
  6. ——, “FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3,” Eur. Phys. J. ST, vol. 228, no. 4, pp. 755–1107, 2019.
  7. C. Aime et al., “Muon Collider Physics Summary,” 3 2022.
  8. E. Abouzaid et al., “Search for lepton flavor violating decays of the neutral kaon,” Phys. Rev. Lett., vol. 100, p. 131803, 2008.
  9. W. Love et al., “Search for Lepton Flavor Violation in Upsilon Decays,” Phys. Rev. Lett., vol. 101, p. 201601, 2008.
  10. J. P. Lees et al., “Search for Lepton Flavor Violation in Υ⁢(3⁢S)→e±⁢μ∓→Υ3𝑆superscript𝑒plus-or-minussuperscript𝜇minus-or-plus\Upsilon(3S)\rightarrow e^{\pm}\mu^{\mp}roman_Υ ( 3 italic_S ) → italic_e start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT ∓ end_POSTSUPERSCRIPT,” Phys. Rev. Lett., vol. 128, no. 9, p. 091804, 2022.
  11. K. Hayasaka et al., “Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau- Pairs,” Phys. Lett. B, vol. 687, pp. 139–143, 2010.
  12. A. M. Baldini et al., “Search for the lepton flavour violating decay μ+→e+⁢γ→superscript𝜇superscripte𝛾\mu^{+}\rightarrow\mathrm{e}^{+}\gammaitalic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → roman_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_γ with the full dataset of the MEG experiment,” Eur. Phys. J. C, vol. 76, no. 8, p. 434, 2016.
  13. U. Bellgardt et al., “Search for the Decay μ+→e+⁢e+⁢e−→superscript𝜇superscript𝑒superscript𝑒superscript𝑒\mu^{+}\to e^{+}e^{+}e^{-}italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT,” Nucl. Phys. B, vol. 299, pp. 1–6, 1988.
  14. W. H. Bertl et al., “A Search for muon to electron conversion in muonic gold,” Eur. Phys. J. C, vol. 47, pp. 337–346, 2006.
  15. C. Dohmen et al., “Test of lepton flavor conservation in mu —>>> e conversion on titanium,” Phys. Lett. B, vol. 317, pp. 631–636, 1993.
  16. W. Honecker et al., “Improved limit on the branching ratio of mu —>>> e conversion on lead,” Phys. Rev. Lett., vol. 76, pp. 200–203, 1996.
  17. J. Kaulard et al., “Improved limit on the branching ratio of mu- –>>> e+ conversion on titanium,” Phys. Lett. B, vol. 422, pp. 334–338, 1998.
  18. G. Aad et al., “Search for the lepton flavor violating decay Z→eμ𝜇\muitalic_μ in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG TeV with the ATLAS detector,” Phys. Rev. D, vol. 90, no. 7, p. 072010, 2014.
  19. R. Akers et al., “A Search for lepton flavor violating Z0 decays,” Z. Phys. C, vol. 67, pp. 555–564, 1995.
  20. P. Abreu et al., “Search for lepton flavor number violating Z0 decays,” Z. Phys. C, vol. 73, pp. 243–251, 1997.
  21. G. Aad et al., “Searches for lepton-flavour-violating decays of the Higgs boson in s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV pp collisions with the ATLAS detector,” Phys. Lett. B, vol. 800, p. 135069, 2020.
  22. A. M. Sirunyan et al., “Search for lepton flavour violating decays of the Higgs boson to μ⁢τ𝜇𝜏\mu\tauitalic_μ italic_τ and eτ𝜏\tauitalic_τ in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP, vol. 06, p. 001, 2018.
  23. M. Ablikim et al., “Search for the lepton flavor violating decay J/ψ→e⁢μ→𝐽𝜓𝑒𝜇J/\psi\to e\muitalic_J / italic_ψ → italic_e italic_μ,” Sci. China Phys. Mech. Astron., vol. 66, no. 2, p. 221011, 2023.
  24. A. M. Baldini et al., “The design of the MEG II experiment,” Eur. Phys. J. C, vol. 78, no. 5, p. 380, 2018.
  25. K. Arndt et al., “Technical design of the phase I Mu3e experiment,” Nucl. Instrum. Meth. A, vol. 1014, p. 165679, 2021.
  26. L. Bartoszek et al., “Mu2e Technical Design Report,” 10 2014.
  27. R. Abramishvili et al., “COMET Phase-I Technical Design Report,” PTEP, vol. 2020, no. 3, p. 033C01, 2020.
  28. R. Barbier et al., “R-parity violating supersymmetry,” Phys. Rept., vol. 420, pp. 1–202, 2005.
  29. I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, and N. Košnik, “Physics of leptoquarks in precision experiments and at particle colliders,” Phys. Rept., vol. 641, pp. 1–68, 2016.
  30. P. Langacker, “The Physics of Heavy Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT Gauge Bosons,” Rev. Mod. Phys., vol. 81, pp. 1199–1228, 2009.
  31. A. J. Buras, A. Crivellin, F. Kirk, C. A. Manzari, and M. Montull, “Global analysis of leptophilic Z’ bosons,” JHEP, vol. 06, p. 068, 2021.
  32. P. Langacker and M. Plumacher, “Flavor changing effects in theories with a heavy Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT boson with family nonuniversal couplings,” Phys. Rev. D, vol. 62, p. 013006, 2000.
  33. G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, “Theory and phenomenology of two-Higgs-doublet models,” Phys. Rept., vol. 516, pp. 1–102, 2012.
  34. J. Bernabeu, E. Nardi, and D. Tommasini, “μ𝜇\muitalic_μ - e𝑒eitalic_e conversion in nuclei and Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT physics,” Nucl. Phys. B, vol. 409, pp. 69–86, 1993.
  35. A. Das and Y. Orikasa, “Z’ induced forward dominant processes in μ𝜇\muitalic_μTRISTAN experiment,” Phys. Lett. B, vol. 851, p. 138577, 2024.
  36. D. Akturk, B. Dagli, and S. Sultansoy, “Muon Ring and FCC-ee / CEPC Based Antimuon-Electron Colliders,” 3 2024.
  37. G. Lichtenstein, M. A. Schmidt, G. Valencia, and R. R. Volkas, “Complementarity of μ𝜇\muitalic_μTRISTAN and Belle II in searches for charged-lepton flavour violation,” Phys. Lett. B, vol. 845, p. 138144, 2023.
  38. Y. Hamada, R. Kitano, R. Matsudo, and H. Takaura, “Precision μ𝜇\muitalic_μ+μ𝜇\muitalic_μ+ and μ𝜇\muitalic_μ+e−-- elastic scatterings,” PTEP, vol. 2023, no. 1, p. 013B07, 2023.
  39. Y. Hamada, R. Kitano, R. Matsudo, H. Takaura, and M. Yoshida, “μ𝜇\muitalic_μTRISTAN,” PTEP, vol. 2022, no. 5, p. 053B02, 2022.
  40. A. O. Bouzas and F. Larios, “An electron-muon collider: what can be probed with it?” Rev. Mex. Fis. Suppl., vol. 4, no. 2, p. 021128, 2023.
  41. F. Bossi and P. Ciafaloni, “Lepton Flavor Violation at muon-electron colliders,” JHEP, vol. 10, p. 033, 2020.
  42. M. Lu, A. M. Levin, C. Li, A. Agapitos, Q. Li, F. Meng, S. Qian, J. Xiao, and T. Yang, “The physics case for an electron-muon collider,” Adv. High Energy Phys., vol. 2021, p. 6693618, 2021.
  43. A. O. Bouzas and F. Larios, “Two-to-Two Processes at an Electron-Muon Collider,” Adv. High Energy Phys., vol. 2022, p. 3603613, 2022.
  44. V. D. Barger, S. Pakvasa, and X. Tata, “Are e mu colliders interesting?” Phys. Lett. B, vol. 415, pp. 200–204, 1997.
  45. S. Y. Choi, C. S. Kim, Y. J. Kwon, and S.-H. Lee, “High-energy FCNC search through e mu colliders,” Phys. Rev. D, vol. 57, pp. 7023–7026, 1998.
  46. J. C. Montero, V. Pleitez, and M. C. Rodriguez, “Left-right asymmetries in polarized e - mu scattering,” Phys. Rev. D, vol. 58, p. 097505, 1998.
  47. G. Cvetic and C. S. Kim, “Heavy Majorana neutrino production at electron - muon colliders,” Phys. Lett. B, vol. 461, pp. 248–255, 1999, [Erratum: Phys.Lett.B 471, 471–472 (2000)].
  48. F. M. L. Almeida, Jr., Y. do Amaral Coutinho, J. A. Martins Simoes, and M. A. B. Vale, do., “Single neutral heavy lepton production at electron muon colliders,” Phys. Lett. B, vol. 494, pp. 273–279, 2000.
  49. J. K. Singhal, S. Singh, and A. K. Nagawat, “Possible exotic neutrino signature in electron muon collisions,” 3 2007.
  50. A.-K. Perrevoort, “Charged lepton flavour violation - Overview of current experimental limits and future plans,” PoS, vol. DISCRETE2022, p. 015, 2024.
  51. L. Calibbi and G. Signorelli, “Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction,” Riv. Nuovo Cim., vol. 41, no. 2, pp. 71–174, 2018.
  52. Y. Kahn, G. Krnjaic, N. Tran, and A. Whitbeck, “M3: a new muon missing momentum experiment to probe (g −-- 2)μ and dark matter at Fermilab,” JHEP, vol. 09, p. 153, 2018.
  53. J. Grange et al., “Muon (g-2) Technical Design Report,” 1 2015.
  54. I. Galon, E. Kajamovitz, D. Shih, Y. Soreq, and S. Tarem, “Searching for muonic forces with the ATLAS detector,” Phys. Rev. D, vol. 101, no. 1, p. 011701, 2020.
  55. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP, vol. 07, p. 079, 2014.
  56. T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An introduction to PYTHIA 8.2,” Comput. Phys. Commun., vol. 191, pp. 159–177, 2015.
  57. J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Selvaggi, “DELPHES 3, A modular framework for fast simulation of a generic collider experiment,” JHEP, vol. 02, p. 057, 2014.
  58. G. D. Maso et al., “Future facilities at PSI, the High-Intensity Muon Beams (HIMB) project,” EPJ Web Conf., vol. 282, p. 01012, 2023.
  59. M. Bogomilov et al., “Transverse Emittance Reduction in Muon Beams by Ionization Cooling,” 10 2023.
  60. ——, “Demonstration of cooling by the Muon Ionization Cooling Experiment,” Nature, vol. 578, no. 7793, pp. 53–59, 2020.
  61. J. Li, W. Wang, X. Cai, C. Yang, M. Lu, Z. You, S. Qian, and Q. Li, “A Comparative Study of Z′ mediated Charged Lepton Flavor Violation at future lepton colliders,” JHEP, vol. 03, p. 190, 2023.
  62. G. Punzi, “Sensitivity of searches for new signals and its optimization,” eConf, vol. C030908, p. MODT002, 2003.
  63. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics,” Eur. Phys. J. C, vol. 71, p. 1554, 2011, [Erratum: Eur.Phys.J.C 73, 2501 (2013)].
  64. M. Aaboud et al., “Search for lepton-flavor violation in different-flavor, high-mass final states in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Phys. Rev. D, vol. 98, no. 9, p. 092008, 2018.
  65. S. Banerjee, “Searches for Lepton Flavor Violation in Tau Decays at Belle II,” Universe, vol. 8, no. 9, p. 480, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.