Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the convergence analysis of linear subdivision schemes (2405.09414v2)

Published 15 May 2024 in math.NA and cs.NA

Abstract: This work presents several new results concerning the analysis of the convergence of binary, univariate, and linear subdivision schemes, all related to the {\it contractivity factor} of a convergent scheme. First, we prove that a convergent scheme cannot have a contractivity factor lower than half. Since the lower this factor is, the faster is the convergence of the scheme, schemes with contractivity factor $\frac{1}{2}$, such as those generating spline functions, have optimal convergence rate. Additionally, we provide further insights and conditions for the convergence of linear schemes and demonstrate their applicability in an improved algorithm for determining the convergence of such subdivision schemes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com