Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Compositional imprecise probability (2405.09391v2)

Published 15 May 2024 in cs.PL, cs.LO, math.CT, and math.PR

Abstract: Imprecise probability is concerned with uncertainty about which probability distributions to use. It has applications in robust statistics and machine learning. We look at programming LLMs for imprecise probability. Our desiderata are that we would like our model to support all kinds of composition, categorical and monoidal; in other words, guided by dataflow diagrams. Another equivalent perspective is that we would like a model of synthetic probability in the sense of Markov categories. Imprecise probability can be modelled in various ways, with the leading monad-based approach using convex sets of probability distributions. This model is not fully compositional because the monad involved is not commutative, meaning it does not have a proper monoidal structure. In this work, we provide a new fully compositional account. The key idea is to name the non-deterministic choices. To manage the renamings and disjointness of names, we use graded monads. We show that the resulting compositional model is maximal and relate it with the earlier monadic approach, proving that we obtain tighter bounds on the uncertainty.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (87)
  1. Probabilistic programming interfaces for random graphs: Markov categories, graphons, and nominal sets. In Proc. POPL 2024, 2024.
  2. Static analysis of programs with imprecise probabilistic inputs. In Proc. VSTTE 2013, pages 22–47, 2013.
  3. A. Appel and V. Kosoy. Basic inframeasure theory. LessWrong, August 2020. https://www.lesswrong.com/posts/YAa4qcMyoucRS2Ykr/basic-inframeasure-theory.
  4. A. Appel and V. Kosoy. Inframeasures and domain theory. LessWrong, March 2021. https://www.lesswrong.com/posts/vrbidMiczaoHBhZGp/inframeasures-and-domain-theory.
  5. T. Barker. A monad for randomized algorithms. In Proc. MFPS 2016, 2016.
  6. J. Bernoulli. Ars conjectandi, opus posthumum. Thurneysen, 1713.
  7. The theory of traces for systems with nondeterminism and probability. In Proc. LICS 2019, 2019.
  8. Presenting convex sets of probability distributions by convex semilattices and unique bases. In Proc. CALCO 2021, CALCO 2021.
  9. G. Boudol and I. Castellani. Flow models of distributed computations: three equivalent semantics for CCS. Inform. Comput., 114:247–314, 1994.
  10. The compositional structure of Bayesian inference. In Proc. MFCS 2023, 2023.
  11. Introduction to extensive and distributive categories. J. Pure Appl. Algebra, 84(2):145–158, 1993.
  12. A theory of recursive domains with applications to concurrency. In Proc. LICS 1998, 1998.
  13. K.-H. Cheung. Distributive Interaction of Algebraic Effects. PhD thesis, University of Oxford Department of Computer Science, 2017.
  14. J. R. B. Cockett. Introduction to distributive categories. Math. Struct. Comput. Sci., 3(3):277–307, 1993.
  15. Layer by layer: composing monads. In Proc. ICTAC 2018, 2018.
  16. S. Dash. A Monadic Theory of Point Processes. PhD thesis, University of Oxford, 2024.
  17. Affine monads and lazy structures for Bayesian programming. In Proc. POPL 2023, 2023.
  18. S. Dash and S. Staton. A monad for probabilistic point processes. In Proc. ACT 2020, 2020.
  19. S. Dash and S. Staton. Monads for measurable queries in probabilistic databases. In Proc. MFPS 2021, 2021.
  20. D. ‘davidad’ Dalrymple. Safeguarded AI: constructing safety by design. ARIA Programme Thesis, January 2024. https://www.aria.org.uk/wp-content/uploads/2024/01/ARIA-Safeguarded-AI-Programme-Thesis-V1.pdf.
  21. B. Day. On closed categories of functors. In Proc. Midwest Category Seminar IV, volume 137 of Lect. Notes Math. Springer, 1969.
  22. Backprop as functor: A compositional perspective on supervised learning. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’19. IEEE Press, 2021.
  23. T. Fritz. A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. Adv. Math., 370, 2020.
  24. T. Fritz and P. Perrone. A criterion for Kan extensions of lax monoidal functors. arxiv:1809.10481, 2018.
  25. T. Fritz and P. Perrone. A probability monad as the colimit of spaces of finite samples. Theory and Applications of Categories, 34, 2019.
  26. Graded hoare logic and its categorical semantics. In Proc. ESOP 2021, 2021.
  27. B. Gavranovic. Fundamental Components of Deep Learning: A category-theoretic approach. PhD thesis, Strathclyde University, 2024. arXiv:2403.13001.
  28. J. Goubault-Larrecq. Continuous previsions. In Proc. CSL 2007, 2007.
  29. J. Goubault-Larrecq. Prevision domains and convex powercones. In Proc. FOSSACS 2008, 2008.
  30. A. Goy and D. Petrisan. Combining probabilistic and non-deterministic choice via weak distributive laws. In LICS 2020, 2020.
  31. C. Hermida and R. Tennent. Monoidal indeterminates and categories of possible worlds. Theoretical Computer Science, 430, 2012.
  32. A convenient category for higher-order probability theory. In Proc. LICS 2017, 2017.
  33. P. J. Huber. Robust statistics. Wiley, 1981.
  34. B. Jacobs. Coalgebraic trace semantics for combined possibilitistic and probabilistic systems. In Proc. CMCS 2008, 2008.
  35. B. Jacobs. From probability monads to commutative effectuses. J. Log. Algebr. Methods Program., 94:200–237, 2018.
  36. B. Jacobs. From multisets over distributions to distributions over multisets. In Proc. LICS 2021, 2021.
  37. B. Jacobs. Structured probabilistic reasoning. Available from the author’s homepage, July 2023. Draft book.
  38. Causal inference by string diagram surgery. In Proc. FOSSACS 2019, 2019.
  39. Commutative monads for probabilistic programming languages. In Proc. LICS 2021, pages 1–14, 2021.
  40. C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations. In Fourth Annual Symposium on Logic in Computer Science, pages 186–195, June 1989.
  41. O. Kammar and G. D. Plotkin. Algebraic foundations for effect-dependent optimisations. In Proc. POPL 2012, pages 349–360, 2012.
  42. S. Katsumata. Parametric effect monads and semantics of effect systems. In Proc. POPL 2014, 2014.
  43. K. Keimel. Topological cones: Foundations for a domain theoretical semantics combining probability and nondeterminism. In MFPS 2005, 2005.
  44. K. Keimel and G. D. Plotkin. Mixed powerdomains for probability and nondeterminism. Log. Methods Comput. Sci., 13, 2017.
  45. G. M. Kelly. Basic Concepts of Enriched Category Theory. CUP, 1982.
  46. F. H. Knight. Risk, uncertainty and profit. Houghton Mifflin, 1921.
  47. A. Kock. Strong functors and monoidal monads. Arch. Math, 23(1):113–120, Dec. 1972.
  48. A. Kock. Commutative monads as a theory of distributions. Theory Appl. Categ., 26(4):97–131, 2012.
  49. V. Kosoy and A. Appel. Infra-Bayesian physicalism: A formal theory of naturalized induction. AI Alignment Forum, November 2021. Available at https://www.alignmentforum.org/posts/gHgs2e2J5azvGFatb/infra-bayesian-physicalism-a-formal-theory-of-naturalized.
  50. D. Kozen and A. Silva. Multisets and distributions. arxiv:2301.10812, 2023.
  51. S. Kura. Graded algebraic theories. In Proc. FOSSACS 2020, 2020.
  52. Weighted relational models of typed lambda-calculi. In Proc. LICS 2013, 2013.
  53. E. D. Lavore and M. Román. Evidential decision theory via partial Markov categories. In Proc. LICS 2023, 2023.
  54. P. B. Levy. Amb breaks well-pointedness, ground amb doesn’t. In Proc. MFPS 2007, 2007.
  55. P. B. Levy. Locally graded categories. Slides available from the author’s webpage, 2019.
  56. Modelling environments in call-by-value programming languages. Inform. Comput., 185, 2003.
  57. Trace types and denotational semantics for sound programmable inference in probabilistic languages. In Proc. POPL 2020, 2020.
  58. Monad transformers and modular interpreters. In Proc. POPL 1995, 1995.
  59. S. Mac Lane. Categories for the Working Mathematician. Springer, 1998.
  60. D. McDermott and T. Uustalu. Flexibly graded monads and graded algebras. In Proc. MPC 2022, 2022.
  61. A. McIver and C. Morgan. Abstraction, Refinement and Proof for Probabilistic Systems. Springer, 2005.
  62. A. K. McIver and C. Morgan. Partial correctness for probabilistic demonic programs. Theoret. Comput. Sci., 266:513–541, 2001.
  63. M. Mio. Upper-expectation bisimilarity and Łukasiewicz mu-calculus. In Proc. FoSSaCS 2014, 2014.
  64. Combining nondeterminism, probability, and termination: Equational and metric reasoning. In Proc. LICS 2021, 2021.
  65. M. Mio and V. Vignudelli. Monads and quantitative equational theories for nondeterminism and probability. In Proc. CONCUR 2020, 2020.
  66. Axioms for probability and nondeterminism. In Proc. EXPRESS 2003, 2003.
  67. E. Moggi. Notions of computation and monads. Information and Computation, 1991.
  68. Unifying graded and parameterised monads. In Proc. MSFP 2020, 2020.
  69. P. Perrone. Markov categories and entropy. IEEE Transactions on Information Theory, 2023.
  70. D. Petrisan and R. Sarkis. Semialgebras and weak distributive laws. In Proc. MFPS 2021, 2021.
  71. A. M. Pitts. Nominal Sets: names and symmetry in computer science. CUP, 2013.
  72. G. D. Plotkin and J. Power. Notions of computation determine monads. In Proc. FOSSACS 2002, 2002.
  73. J. Power. Generic models for computational effects. Theor. Comput. Sci., 364(2):254–269, 2006.
  74. D. Shiebler. Categorical Stochastic Processes and Likelihood. Compositionality, 3, Apr. 2021.
  75. A. Simpson. Probability sheaves and the Giry monad. In Proc. CALCO 2017, 2017.
  76. S. Staton. Commutative semantics for probabilistic programming. In Proc. ESOP 2017, pages 855–879, 2017.
  77. The Beta-Bernoulli process and algebraic effects. In Proc. ICALP 2018, 2018.
  78. D. Stein and R. Samuelson. A categorical treatment of open linear systems, March 2024. arxiv:2403.03934.
  79. D. Stein and S. Staton. Compositional semantics for probabilistic programs with exact conditioning. In Proc. LICS 2021, 2021.
  80. A language for counterfactual generative models. In Proc. ICML 2021, pages 10173–10182, 2021.
  81. A domain theory for statistical probabilistic programming. Proc. ACM Program. Lang., 3(POPL):36:1–36:29, 2019.
  82. An introduction to probabilistic programming. arXiv e-print 1809.10756, 2018.
  83. Convex language semantics for nondeterministic probabilistic automata. In Proc. ICTAC 2018, 2018.
  84. D. Varacca and G. Winskel. Distributing probability over non-determinism. Math. Structures Comput. Sci., pages 87–113, 2006.
  85. Various authors. Eckmann-Hilton argument. nLab, April 2024. https://ncatlab.org/nlab/show/Eckmann-Hilton+argument#variation.
  86. P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, 1991.
  87. R. Wood. Indical methods for relative categories. PhD thesis, Dalhousie University, 1976.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.