Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
458 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Searches for Galactic Neutrinos with the IceCube Neutrino observatory (2405.09267v1)

Published 15 May 2024 in astro-ph.HE

Abstract: The sources of galactic charged cosmic rays are so far unknown, because their arrival directions are randomized in the galactic magnetic field. Objects accelerating hadrons are expected to produce high-energy neutrinos. In addition, a diffuse galactic neutrino flux is predicted from interactions of galactic cosmic rays with matter during propagation through the galaxy. The IceCube neutrino observatory at the geographic South Pole instruments a cubic kilometer of ice with optical modules to detect the Cherenkov light of particles produced in neutrino interactions. Operating for more than a decade in its complete detector configuration, IceCube is in a unique position to search for neutrino sources. This contribution discusses the searches for a diffuse flux of neutrinos as wells as for neutrinos from candidate point sources and extended sources in the galactic plane.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. M. G. Aartsen et al. The IceCube neutrino observatory: instrumentation and online systems. J. Instrum., 12:P03012, 2017.
  2. R. Abbasi et al. Observation of seven astrophysical tau neutrino candidates with IceCube. Phys. Rev. Lett., 132:151001, 2024.
  3. Z. Cao et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ𝛾\gammaitalic_γ-ray galactic sources. Nature, 594(7861):33–36, 2021.
  4. R. Abbasi et al. Searches for neutrinos from LHAASO UHE γ𝛾\gammaitalic_γ-ray sources. Astrophys. J. Lett., 945:L8, 2023.
  5. Giulia Illuminati. Searches for point-like sources of cosmic neutrinos with 13 years of ANTARES data. In Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021), volume 395, page 1161, 2021.
  6. M. G. Aartsen et al. Time-integrated neutrino source searches with 10 years of IceCube data. Phys. Rev. Lett., 124:051103, 2020.
  7. M. Ahlers and K. Murase. Probing the galactic origin of the IceCube excess with gamma rays. Phys. Rev. D, 90:023010, 2014.
  8. R. Abbasi et al. Observation of high-energy neutrinos from the galactic plane. Science, 380:1338–1343, 2023.
  9. R. Abbasi et al. A convolutional neural network based cascade reconstruction for the IceCube neutrino observatory. J. Instrum., 16:P07041, 2021.
  10. M. Ackermann et al. Fermi-LAT observations of the diffuse γ𝛾\gammaitalic_γ-ray emission: Implications for cosmic rays and the interstellar medium. Astrophys. J., 750:3, 2012.
  11. Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J., 509:212, 1998.
  12. D. Gaggero et al. The gamma-ray and neutrino sky: A consistent picture of Fermi-LAT, Milagro, and IceCube results. Astrophys. J. Lett., 815:L25, 2015.
  13. A. Mellinger. A color all-sky panorama image of the milky way. Publ. Astron. Soc. Pac., 121:1180, 2009.
  14. NASA Goddard Space Flight Center. Fermi’s 12-year view of the gamma-ray sky. https://svs.gsfc.nasa.gov/14090, 2022.
  15. R. Abbasi et al. Search for extended sources of neutrino emission in the galactic plane with IceCube. Astrophys. J., 956:20, 2023.
  16. H. Abdalla et al. The H.E.S.S. galactic plane survey. Astron. & Astrophys., 612:A1, 2018.
  17. H. Abdalla et al. TeV emission of galactic plane sources with HAWC and H.E.S.S. Astrophys. J., 917:6, 2021.
  18. S. P. Wakely and D. Horan. TeVCat: An online catalog for very high energy gamma-ray astronomy. In Proceedings of the 30th International Cosmic Ray Conference, volume 3, page 1341, 2008.
  19. P. Fürst. Galactic and Extragalactic Analysis of the Astrophysical Muon Neutrino Flux with 12.3 years of IceCube Track Data. In Proceedings of 38th International Cosmic Ray Conference — PoS(ICRC2023), volume 444, page 1046, 2023.
  20. S Adrián-Martínez et al. Letter of intent for KM3NeT 2.0. J. Phys. G Nucl. Part. Phys., 43(8):084001, August 2016.
  21. A V Avrorin et al. Deep-underwater Cherenkov detector in lake Baikal. J. Exp. Theor. Phys., 134(4):399–416, April 2022.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)