Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SOMTP: Self-Supervised Learning-Based Optimizer for MPC-Based Safe Trajectory Planning Problems in Robotics (2405.09212v1)

Published 15 May 2024 in cs.RO and cs.LG

Abstract: Model Predictive Control (MPC)-based trajectory planning has been widely used in robotics, and incorporating Control Barrier Function (CBF) constraints into MPC can greatly improve its obstacle avoidance efficiency. Unfortunately, traditional optimizers are resource-consuming and slow to solve such non-convex constrained optimization problems (COPs) while learning-based methods struggle to satisfy the non-convex constraints. In this paper, we propose SOMTP algorithm, a self-supervised learning-based optimizer for CBF-MPC trajectory planning. Specifically, first, SOMTP employs problem transcription to satisfy most of the constraints. Then the differentiable SLPG correction is proposed to move the solution closer to the safe set and is then converted as the guide policy in the following training process. After that, inspired by the Augmented Lagrangian Method (ALM), our training algorithm integrated with guide policy constraints is proposed to enable the optimizer network to converge to a feasible solution. Finally, experiments show that the proposed algorithm has better feasibility than other learning-based methods and can provide solutions much faster than traditional optimizers with similar optimality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. J. Ji, A. Khajepour, W. W. Melek, and Y. Huang, “Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints,” IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp. 952–964, 2017.
  2. M. Ammour, R. Orjuela, and M. Basset, “A mpc combined decision making and trajectory planning for autonomous vehicle collision avoidance,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 24 805–24 817, 2022.
  3. Z. Jian, Z. Yan, X. Lei, Z. Lu, B. Lan, X. Wang, and B. Liang, “Dynamic control barrier function-based model predictive control to safety-critical obstacle-avoidance of mobile robot,” in IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 3679–3685.
  4. J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive control with discrete-time control barrier function,” in American Control Conference (ACC), 2021, pp. 3882–3889.
  5. W. Xiao, C. G. Cassandras, and C. A. Belta, “Bridging the gap between optimal trajectory planning and safety-critical control with applications to autonomous vehicles,” Automatica, vol. 129, p. 109592, 2021.
  6. Y. Yu, D. Shan, O. Benderius, C. Berger, and Y. Kang, “Formally robust and safe trajectory planning and tracking for autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 22 971–22 987, 2022.
  7. P. L. Donti, D. Rolnick, and J. Z. Kolter, “Dc3: A learning method for optimization with hard constraints,” in International Conference on Learning Representations (ICLR), 2021.
  8. C. Kirches, L. Wirsching, H. G. Bock, and J. P. Schlöder, “Efficient direct multiple shooting for nonlinear model predictive control on long horizons,” Journal of Process Control, vol. 22, no. 3, pp. 540–550, 2012.
  9. R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, “On augmented lagrangian methods with general lower-level constraints,” SIAM Journal on Optimization, vol. 18, no. 4, pp. 1286–1309, 2008.
  10. J. Kotary, F. Fioretto, P. Van Hentenryck, and B. Wilder, “End-to-end constrained optimization learning: A survey,” in International Joint Conference on Artificial Intelligence (IJCAI), 2021, pp. 4475–4482.
  11. J. Kotary, F. Fioretto, and P. Van Hentenryck, “Learning hard optimization problems: A data generation perspective,” Advances in Neural Information Processing Systems (NeurIPS), vol. 34, pp. 24 981–24 992, 2021.
  12. A. S. Zamzam and K. Baker, “Learning optimal solutions for extremely fast ac optimal power flow,” in IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2020, pp. 1–6.
  13. F. Fioretto, T. W. Mak, and P. Van Hentenryck, “Predicting ac optimal power flows: Combining deep learning and lagrangian dual methods,” in Proceedings of the AAAI conference on artificial intelligence (AAAI), vol. 34, no. 01, 2020, pp. 630–637.
  14. S. Park and P. Van Hentenryck, “Self-supervised primal-dual learning for constrained optimization,” in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 37, no. 4, 2023, pp. 4052–4060.
  15. C. Diehl, J. Adamek, M. Krüger, F. Hoffmann, and T. Bertram, “Differentiable constrained imitation learning for robot motion planning and control,” arXiv preprint arXiv:2210.11796, 2022.
  16. A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter, “Differentiable convex optimization layers,” Advances in neural information processing systems (NeurIPS), vol. 32, 2019.
  17. T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge, “Projection-based constrained policy optimization,” in International Conference on Learning Representations (ICLR), 2020.
  18. Y. Emam, G. Notomista, P. Glotfelter, Z. Kira, and M. Egerstedt, “Safe reinforcement learning using robust control barrier functions,” IEEE Robotics and Automation Letters, pp. 1–8, 2022.
  19. R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end safe reinforcement learning through barrier functions for safety-critical continuous control tasks,” in Proceedings of the AAAI conference on artificial intelligence (AAAI), vol. 33, no. 01, 2019, pp. 3387–3395.
  20. X. Zhang, Y. Peng, W. Pan, X. Xu, and H. Xie, “Barrier function-based safe reinforcement learning for formation control of mobile robots,” in 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 5532–5538.
  21. C. Broyden and N. Attia, “Penalty functions, newton’s method, and quadratic programming,” Journal of optimization theory and applications, vol. 58, pp. 377–385, 1988.
  22. Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dynamic programming,” in IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 1168–1175.
  23. L. Armijo, “Minimization of functions having lipschitz continuous first partial derivatives,” Pacific Journal of mathematics, vol. 16, no. 1, pp. 1–3, 1966.
  24. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106, pp. 25–57, 2006.
  25. B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an operator splitting solver for quadratic programs,” Mathematical Programming Computation, vol. 12, no. 4, pp. 637–672, 2020. [Online]. Available: https://doi.org/10.1007/s12532-020-00179-2
  26. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
  27. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in neural information processing systems (NeurIPS), vol. 32, 2019.

Summary

We haven't generated a summary for this paper yet.