Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Propagation of chaos for moderately interacting particle systems related to singular kinetic Mckean-Vlasov SDEs (2405.09195v1)

Published 15 May 2024 in math.AP and math.PR

Abstract: We study the propagation of chaos in a class of moderately interacting particle systems for the approximation of singular kinetic McKean-Vlasov SDEs driven by alpha-stable processes. Diffusion parts include Brownian (alpha=2) and pure-jump (1<\alpha<2) perturbations and interaction kernels are considered in a non-smooth anisotropic Besov space. Using Duhamel formula, sharp density estimates (recently issued in Hao, Rockner and Zhang 2023), and suitable martingale functional inequalities, we obtain direct estimates on the convergence rate between the empirical measure of the particle systems toward the McKean-Vlasov distribution. These estimates further lead to quantitative propagation of chaos results in the weak and strong sense.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com