Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Influence Maximization in Hypergraphs Using A Genetic Algorithm with New Initialization and Evaluation Methods (2405.09185v1)

Published 15 May 2024 in cs.SI and cs.NE

Abstract: Influence maximization (IM) is a crucial optimization task related to analyzing complex networks in the real world, such as social networks, disease propagation networks, and marketing networks. Publications to date about the IM problem focus mainly on graphs, which fail to capture high-order interaction relationships from the real world. Therefore, the use of hypergraphs for addressing the IM problem has been receiving increasing attention. However, identifying the most influential nodes in hypergraphs remains challenging, mainly because nodes and hyperedges are often strongly coupled and correlated. In this paper, to effectively identify the most influential nodes, we first propose a novel hypergraph-independent cascade model that integrates the influences of both node and hyperedge failures. Afterward, we introduce genetic algorithms (GA) to identify the most influential nodes that leverage hypergraph collective influences. In the GA-based method, the hypergraph collective influence is effectively used to initialize the population, thereby enhancing the quality of initial candidate solutions. The designed fitness function considers the joint influences of both nodes and hyperedges. This ensures the optimal set of nodes with the best influence on both nodes and hyperedges to be evaluated accurately. Moreover, a new mutation operator is designed by introducing factors, i.e., the collective influence and overlapping effects of nodes in hypergraphs, to breed high-quality offspring. In the experiments, several simulations on both synthetic and real hypergraphs have been conducted, and the results demonstrate that the proposed method outperforms the compared methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. D. M. Boyd and N. B. Ellison, “Social network sites: Definition, history, and scholarship,” Journal of Computer-Mediated Communication, vol. 13, no. 1, p. 210 – 230, 2007.
  2. J.-R. Lee and C.-W. Chung, “A fast approximation for influence maximization in large social networks,” WWW 2014 Companion - Proceedings of the 23rd International Conference on World Wide Web, vol. 7, p. 1157 – 1162, 2014.
  3. T. Cai, J. Li, A. Mian, R.-H. Li, T. Sellis, and J. X. Yu, “Target-aware holistic influence maximization in spatial social networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, p. 1993 – 2007, 2022.
  4. F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Transactions on Industrial Electronics, vol. 53, p. 1398 – 1409, 2006.
  5. H. Jiang, Z. Xiao, Z. Li, J. Xu, F. Zeng, and D. Wang, “An energy-efficient framework for internet of things underlaying heterogeneous small cell networks,” IEEE Transactions on Mobile Computing, vol. 21, p. 31 – 43, 2022.
  6. S. Olmi, L. V. Gambuzza, and M. Frasca, “Multilayer control of synchronization and cascading failures in power grids,” Chaos, Solitons and Fractals, vol. 180, p. 114412, 2024.
  7. J. Grzybowski, E. E. N. Macau, and T. Yoneyama, “Power-grids as complex networks: Emerging investigations into robustness and stability,” Understanding Complex Systems, vol. 315, p. 287 – 315, 2018.
  8. R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, and J. Shaman, “Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (sars-cov-2),” Science, vol. 368, p. 489 – 493, 2020.
  9. S. Pei, F. Liljeros, and J. Shaman, “Identifying asymptomatic spreaders of antimicrobial-resistant pathogens in hospital settings,” Proceedings of the National Academy of Sciences of the United States of America, vol. 118, p. 14, 2021.
  10. R. Zhang, J. Tai, and S. Pei, “Ensemble inference of unobserved infections in networks using partial observations,” PLoS Computational Biology, vol. 19, p. e1011355, 2023.
  11. S. S. Chaharborj, K. N. Nabi, K. L. Feng, S. S. Chaharborj, and P. S. Phang, “Controlling covid-19 transmission with isolation of influential nodes,” Chaos, Solitons and Fractals, vol. 159, p. 112035, 2022.
  12. D. Brockmann and D. Helbing, “The hidden geometry of complex, network-driven contagion phenomena,” Science, vol. 342, p. 1337 – 1342, 2013.
  13. M. A. Al-garadi, K. D. Varathan, and S. D. Ravana, “Identification of influential spreaders in online social networks using interaction weighted k-core decomposition method,” Physica A: Statistical Mechanics and its Applications, vol. 468, p. 278 – 288, 2017.
  14. P. Domingos and M. Richardson, “Mining the network value of customers,” Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 1, p. 57 – 66, 2001.
  15. A. Goyal, W. Lu, and L. V. Lakshmanan, “Celf++: Optimizing the greedy algorithm for influence maximization in social networks,” Proceedings of the 20th International Conference Companion on World Wide Web, WWW 2011, vol. 1, p. 47 – 48, 2011.
  16. I. Lozano-Osorio, J. Sanchez-Oro, A. Duarte, and O. Cordon, “A quick grasp-based method for influence maximization in social networks,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 4, p. 3767 – 3779, 2023.
  17. S. Kundu, C. Murthy, and S. Pal, “A new centrality measure for influence maximization in social networks,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6744, p. 242 – 247, 2011.
  18. W. Yu, G. Cong, G. Song, and K. Xie, “Community-based greedy algorithm for mining top-k influential nodes in mobile social networks,” Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 1, p. 1039 – 1048, 2010.
  19. S. Kumar, A. Gupta, and I. Khatri, “Csr: A community based spreaders ranking algorithm for influence maximization in social networks,” World Wide Web, vol. 25, no. 6, p. 2303 – 2322, 2022.
  20. M. Gong, J. Yan, B. Shen, L. Ma, and Q. Cai, “Influence maximization in social networks based on discrete particle swarm optimization,” Information Sciences, vol. 367-368, p. 600 – 614, 2016.
  21. L. Wang, L. Ma, C. Wang, N.-G. Xie, J. M. Koh, and K. H. Cheong, “Identifying influential spreaders in social networks through discrete moth-flame optimization,” IEEE Transactions on Evolutionary Computation, vol. 25, no. 6, p. 1091 – 1102, 2021.
  22. L. Torres, A. S. Blevins, D. Bassett, and T. Eliassi-Rad, “The why, how, and when of representations for complex systems,” SIAM Review, vol. 63, no. 3, p. 435 – 485, 2021.
  23. F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.-G. Young, and G. Petri, “Networks beyond pairwise interactions: Structure and dynamics,” Physics Reports, vol. 874, p. 1 – 92, 2020.
  24. N. Firouzkouhi, A. Amini, A. Bani-Mustafa, A. Mehdizadeh, S. Damrah, A. Gholami, C. Cheng, and B. Davvaz, “Generalized fuzzy hypergraph for link prediction and identification of influencers in dynamic social media networks,” Expert Systems with Applications, vol. 238, p. 121736, 2024.
  25. J. J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 16, p. 122 – 128, 1986.
  26. J.-J. Wang, Y.-Y. Jing, and C.-F. Zhang, “Optimization of capacity and operation for cchp system by genetic algorithm,” Applied Energy, vol. 87, p. 1325 – 1335, 2010.
  27. C. Pizzuti, “A multiobjective genetic algorithm to find communities in complex networks,” IEEE Transactions on Evolutionary Computation, vol. 16, p. 418 – 430, 2012.
  28. D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of influence through a social network,” Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 24, p. 137 – 146, 2003.
  29. U. Brandes, “A faster algorithm for betweenness centrality,” Journal of Mathematical Sociology, vol. 25, no. 2, p. 163 – 177, 2001.
  30. K. Okamoto, W. Chen, and X.-Y. Li, “Ranking of closeness centrality for large-scale social networks,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5059, p. 186 – 195, 2008.
  31. T. Opsahl, F. Agneessens, and J. Skvoretz, “Node centrality in weighted networks: Generalizing degree and shortest paths,” Social Networks, vol. 32, p. 245 – 251, 2010.
  32. L. Page and S. Brin, “The anatomy of a large-scale hypertextual web search engine,” Computer Networks, vol. 30, p. 107 – 117, 1998.
  33. M. Heidari, M. Asadpour, and H. Faili, “Smg: Fast scalable greedy algorithm for influence maximization in social networks,” Physica A: Statistical Mechanics and its Applications, vol. 420, p. 124 – 133, 2015.
  34. C. Dong, G. Xu, P. Yang, and L. Meng, “Tsifim: A three-stage iterative framework for influence maximization in complex networks,” Expert Systems with Applications, vol. 212, p. 118702, 2023.
  35. M. Gong, C. Song, C. Duan, L. Ma, and B. Shen, “An efficient memetic algorithm for influence maximization in social networks,” IEEE Computational Intelligence Magazine, vol. 11, p. 22 – 33, 2016.
  36. Y. Liu, X. Wang, and J. Kurths, “Framework of evolutionary algorithm for investigation of influential nodes in complex networks,” IEEE Transactions on Evolutionary Computation, vol. 6, p. 1049 – 1063, 2019.
  37. Q. Jiang, G. Song, G. Cong, Y. Wang, W. Si, and K. Xie, “Simulated annealing based influence maximization in social networks,” Proceedings of the National Conference on Artificial Intelligence, vol. 1, p. 127 – 132, 2011.
  38. Y. Li, J. Fan, Y. Wang, and K.-L. Tan, “Influence maximization on social graphs: A survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 30, p. 1852 – 1872, 2018.
  39. M. Xie, X.-X. Zhan, C. Liu, and Z.-K. Zhang, “An efficient adaptive degree-based heuristic algorithm for influence maximization in hypergraphs,” Information Processing and Management, vol. 60, p. 103161, 2023.
  40. R. Puzis, M. Purohit, and V. Subrahmanian, “Betweenness computation in the single graph representation of hypergraphs,” Social Networks, vol. 35, p. 561 – 572, 2013.
  41. R. Zhang, X. Qu, Q. Zhang, X. Xu, and S. Pei, “Influence maximization based on threshold models in hypergraphs,” Chaos, vol. 34, p. 023111, 2024.
  42. X. Gong, H. Wang, X. Wang, C. Chen, W. Zhang, and Y. Zhang, “Influence maximization on hypergraphs via multi-hop influence estimation,” Information Processing and Management, vol. 61, p. 103683, 2024.
  43. J. Wu and D. Li, “Modeling and maximizing information diffusion over hypergraphs based on deep reinforcement learning,” Physica A: Statistical Mechanics and its Applications, vol. 629, p. 129193, 2023.
  44. K. Kovalenko, M. Romance, E. Vasilyeva, D. Aleja, R. Criado, D. Musatov, A. Raigorodskii, J. Flores, I. Samoylenko, K. Alfaro-Bittner, M. Perc, and S. Boccaletti, “Vector centrality in hypergraphs,” Chaos, Solitons and Fractals, vol. 162, p. 112397, 2022.
  45. C. Wang, J. Zhao, L. Li, L. Jiao, J. Liu, and K. Wu, “A multi-transformation evolutionary framework for influence maximization in social networks,” IEEE Computational Intelligence Magazine, vol. 18, p. 52 – 67, 2023.
  46. R.-R. Liu, C.-X. Jia, M. Li, and F. Meng, “A threshold model of cascading failure on random hypergraphs,” Chaos, Solitons and Fractals, vol. 173, p. 113746, 2023.
  47. S. Wang, J. Liu, and Y. Jin, “Finding influential nodes in multiplex networks using a memetic algorithm,” IEEE Transactions on Cybernetics, vol. 51, p. 900 – 912, 2021.
  48. P. S. Chodrow, N. Veldt, and A. R. Benson, “Generative hypergraph clustering: From blockmodels to modularity,” Science Advances, vol. 7, p. 1303, 2021.
  49. R. Mastrandrea, J. Fournet, and A. Barrat, “Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys,” PLoS ONE, vol. 10, p. e0136497, 2015.
  50. I. Amburg, N. Veldt, and A. R. Benson, “Diverse and experienced group discovery via hypergraph clustering,” Proceedings of the 2022 SIAM International Conference on Data Mining, SDM 2022, vol. 1, p. 145 – 153, 2022.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets