Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrated Sensing and Communication Enabled Cooperative Passive Sensing Using Mobile Communication System (2405.09179v2)

Published 15 May 2024 in eess.SP

Abstract: Integrated sensing and communication (ISAC) is a potential technology of the sixth-generation (6G) mobile communication system, which enables communication base station (BS) with sensing capability. However, the performance of single-BS sensing is limited, which can be overcome by multi-BS cooperative sensing. There are three types of multi-BS cooperative sensing, including cooperative active sensing, cooperative passive sensing, and cooperative active and passive sensing, where the multi-BS cooperative passive sensing has the advantages of low hardware modification cost and large sensing coverage. However, multi-BS cooperative passive sensing faces the challenges of synchronization offsets mitigation and sensing information fusion. To address these challenges, a non-line of sight (NLoS) and line of sight (LoS) signal cross-correlation (NLCC) method is proposed to mitigate carrier frequency offset (CFO) and time offset (TO). Besides, a symbol-level multi-BS sensing information fusion method is proposed. The discrete samplings of echo signals from multiple BSs are matched independently and coherent accumulated to improve sensing accuracy. Moreover, a lowcomplexity joint angle-of-arrival (AoA) and angle-of-departure (AoD) estimation method is proposed to reduce the computational complexity. Simulation results show that symbol-level multi-BS cooperative passive sensing scheme has an order of magnitude higher sensing accuracy than single-BS passive sensing. This work provides a reference for the research on multi-BS cooperative passive sensing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Z. Wei, H. Liu, X. Yang, W. Jiang, H. Wu, X. Li, and Z. Feng, “Carrier aggregation enabled integrated sensing and communication signal design and processing,” IEEE Transactions on Vehicular Technology, Oct 2023.
  2. Z. Wei, W. Jiang, Z. Feng, H. Wu, N. Zhang, K. Han, R. Xu, and P. Zhang, “Integrated Sensing and Communication enabled Multiple Base Stations Cooperative Sensing Towards 6G,” IEEE Network, Oct 2023.
  3. H. Liu, Z. Wei, F. Li, Y. Lin, H. Qu, H. Wu, and Z. Feng, “ISAC Signal Processing Over Unlicensed Spectrum Bands,” arXiv preprint arXiv:2310.02555, 2023.
  4. I. T. Union, “Future technology trends of terrestrial International Mobile Telecommunications systems towards 2030 and beyond,” 2022.
  5. Z. Wei, R. Xu, Z. Feng, H. Wu, N. Zhang, W. Jiang, and X. Yang, “Symbol-level Integrated Sensing and Communication enabled Multiple Base Stations Cooperative Sensing,” IEEE Transactions on Vehicular Technology, Aug 2023.
  6. Z. Ni, J. A. Zhang, X. Huang, K. Yang, and J. Yuan, “Uplink sensing in perceptive mobile networks with asynchronous transceivers,” IEEE Transactions on Signal Processing, vol. 69, pp. 1287–1300, Feb 2021.
  7. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE journal on selected areas in communications, vol. 40, no. 6, pp. 1728–1767, Mar 2022.
  8. Z. Wei, H. Qu, Y. Wang, X. Yuan, H. Wu, Y. Du, K. Han, N. Zhang, and Z. Feng, “Integrated sensing and communication signals towards 5G-A and 6G: A survey,” IEEE Internet of Things Journal, Jan 2023.
  9. Z. Xiao, R. Liu, M. Li, and Q. Liu, “A Novel Joint Angle-Range-Velocity Estimation Method for MIMO-OFDM ISAC Systems,” arXiv preprint arXiv:2308.03387, 2023.
  10. X. Li, J. Zhang, C. Han, W. Hao, M. Zeng, Z. Zhu, and H. Wang, “Reliability and security of CR-STAR-RIS-NOMA assisted IoT networks,” IEEE Internet of Things Journal, Dec 2023.
  11. X. Li, H. Qi, D.-T. Do, Z. Hui, Y. Ding, M. Zhu, and H. Peng, “IQ-Impaired Wireless-Powered Modify-and-Forward Relaying for IoT Networks: An In-Depth Physical Layer Security Analysis,” IEEE Internet of Things Journal, Feb 2023.
  12. J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo, S. Chen, and J. Yuan, “Enabling joint communication and radar sensing in mobile networks—A survey,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 306–345, Oct 2021.
  13. W. Jiang, Z. Wei, B. Li, Z. Feng, and Z. Fang, “Improve Radar Sensing Performance of Multiple Roadside Units Cooperation via Space Registration,” IEEE Transactions on Vehicular Technology, vol. 71, no. 10, pp. 10 975–10 990, Oct. 2022.
  14. Z. Wei, H. Qu, W. Jiang, K. Han, H. Wu, and Z. Feng, “Iterative Signal Processing for Integrated Sensing and Communication Systems,” IEEE Transactions on Green Communications and Networking, vol. 7, no. 1, pp. 401–412, Mar. 2023.
  15. H. Kuschel, D. Cristallini, and K. E. Olsen, “Tutorial: Passive radar tutorial,” IEEE Aerospace and Electronic Systems Magazine, vol. 34, no. 2, pp. 2–19, Feb 2019.
  16. X. Li, J. Li, Y. Liu, Z. Ding, and A. Nallanathan, “Residual transceiver hardware impairments on cooperative NOMA networks,” IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp. 680–695, Oct 2019.
  17. W. Xianrong, Y. Jianxin, Z. Weijie, X. Deqiang, S. Kan, S. Jiale, C. Feng, R. Yunhua, G. Ziping, and K. Hengyu, “Research progress and development trend of the multi-illuminator-based passive radar,” Journal of Radars, vol. 9, no. 6, pp. 939–958, Dec 2020.
  18. J. A. Zhang, K. Wu, X. Huang, Y. J. Guo, D. Zhang, and R. W. Heath, “Integration of radar sensing into communications with asynchronous transceivers,” IEEE Communications Magazine, vol. 60, no. 11, pp. 106–112, Aug 2022.
  19. M. Younis, R. Metzig, and G. Krieger, “Performance prediction of a phase synchronization link for bistatic sar,” IEEE Geoscience and Remote Sensing Letters, vol. 3, no. 3, pp. 429–433, Jul 2006.
  20. G. Jin, K. Liu, D. Liu, D. Liang, H. Zhang, N. Ou, Y. Zhang, Y. Deng, C. Li, and R. Wang, “An advanced phase synchronization scheme for LT-1,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 3, pp. 1735–1746, Nov 2019.
  21. Y. Cai, R. Wang, W. Yu, D. Liang, K. Liu, H. Zhang, and Y. Chen, “An advanced approach to improve synchronization phase accuracy with compressive sensing for LT-1 bistatic spaceborne SAR,” Remote Sensing, vol. 14, no. 18, p. 4621, Sep 2022.
  22. K. Qian, C. Wu, Y. Zhang, G. Zhang, Z. Yang, and Y. Liu, “Widar2. 0: Passive human tracking with a single Wi-Fi link,” in Proceedings of the 16th annual international conference on mobile systems, applications, and services, Jun 2018, pp. 350–361.
  23. Y. Zeng, D. Wu, J. Xiong, E. Yi, R. Gao, and D. Zhang, “FarSense: Pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 3, no. 3, pp. 1–26, Sep 2019.
  24. A. J. Weiss and A. Amar, “Direct geolocation of stationary wideband radio signal based on time delays and Doppler shifts,” in 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.   IEEE, Oct 2009, pp. 101–104.
  25. M. Ren, P. He, and J. Zhou, “Improved Shape-Based Distance Method for Correlation Analysis of Multi-Radar Data Fusion in Self-Driving Vehicle,” IEEE Sensors Journal, vol. 21, no. 21, pp. 24 771–24 781, Sep 2021.
  26. W. Jiang, Z. Qi, Z. Ye, Y. Wan, and L. Li, “Research on Cooperative Detection Technology of Networked Radar Based on Data Fusion,” in 2021 2nd China International SAR Symposium (CISS).   IEEE, Dec 2021, pp. 1–5.
  27. S.-I. Oh and H.-B. Kang, “Object detection and classification by decision-level fusion for intelligent vehicle systems,” Sensors, vol. 17, no. 1, p. 207, Jan 2017.
  28. B. Gao, M. Jia, T. Zhang, and Q. Zhang, “Reliable target positioning in complicated environments using multiple radar observations,” in 2021 IEEE Global Communications Conference (GLOBECOM).   IEEE, Feb 2021, pp. 1–6.
  29. S. Venkatesh and R. Buehrer, “Non-line-of-sight identification in ultra-wideband systems based on received signal statistics,” IET Microwaves, Antennas & Propagation, vol. 1, no. 6, pp. 1120–1130, Dec 2007.
  30. Z. Wang, W. Xu, and S. A. Zekavat, “A new multi-antenna based los-nlos separation technique,” in 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop.   IEEE, Feb 2009, pp. 331–336.
  31. A. Chouchane, S. Rekhis, and N. Boudriga, “Defending against rogue base station attacks using wavelet based fingerprinting,” in 2009 IEEE/ACS International Conference on Computer Systems and Applications.   IEEE, Jun 2009, pp. 523–530.
  32. X. Hu, C. Masouros, F. Liu, and R. Nissel, “Low-PAPR DFRC MIMO-OFDM Waveform Design for Integrated Sensing and Communications,” in ICC 2022-IEEE International Conference on Communications.   IEEE, Aug 2022, pp. 1599–1604.
  33. P. Aggarwal and V. A. Bohara, “Characterization of HPA using two dimensional general memory polynomial for dual band carrier aggregated MIMO-OFDM systems,” in 2016 IEEE International Conference on Communications (ICC).   IEEE, Jul 2016, pp. 1–7.
  34. C. Sturm and W. Wiesbeck, “Waveform design and signal processing aspects for fusion of wireless communications and radar sensing,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1236–1259, May 2011.
  35. I. Pasya, N. Iwakiri, and T. Kobayashi, “Joint direction-of-departure and direction-of-arrival estimation in an ultra-wideband MIMO radar system,” in 2014 IEEE Radio and Wireless Symposium (RWS).   IEEE, Jun 2014, pp. 52–54.
  36. X. Zhang, L. Xu, L. Xu, and D. Xu, “Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC,” IEEE communications letters, vol. 14, no. 12, pp. 1161–1163, Nov 2010.
  37. C. Sturm, T. Zwick, and W. Wiesbeck, “An OFDM system concept for joint radar and communications operations,” in VTC Spring 2009-IEEE 69th Vehicular Technology Conference.   IEEE, Jun 2009, pp. 1–5.
  38. M. A. Richards, “Noncoherent integration gain, and its approximation,” Georgia Institute of Technology, Technical Memo, Jun 2010.
  39. W. Jiang, Z. Wei, S. Yang, Z. Feng, and P. Zhang, “Cooperation Based Joint Active and Passive Sensing with Asynchronous Transceivers for Perceptive Mobile Networks,” arXiv preprint arXiv:2312.02163, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com