Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BonnBot-I Plus: A Bio-diversity Aware Precise Weed Management Robotic Platform (2405.09118v2)

Published 15 May 2024 in cs.RO, cs.AI, cs.LG, and cs.MA

Abstract: In this article, we focus on the critical tasks of plant protection in arable farms, addressing a modern challenge in agriculture: integrating ecological considerations into the operational strategy of precision weeding robots like \bbot. This article presents the recent advancements in weed management algorithms and the real-world performance of \bbot\ at the University of Bonn's Klein-Altendorf campus. We present a novel Rolling-view observation model for the BonnBot-Is weed monitoring section which leads to an average absolute weeding performance enhancement of $3.4\%$. Furthermore, for the first time, we show how precision weeding robots could consider bio-diversity-aware concerns in challenging weeding scenarios. We carried out comprehensive weeding experiments in sugar-beet fields, covering both weed-only and mixed crop-weed situations, and introduced a new dataset compatible with precision weeding. Our real-field experiments revealed that our weeding approach is capable of handling diverse weed distributions, with a minimal loss of only $11.66\%$ attributable to intervention planning and $14.7\%$ to vision system limitations highlighting required improvements of the vision system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. M. L. Zingsheim and T. F. Döring, “What weeding robots need to know about ecology,” Agriculture, Ecosystems & Environment, vol. 364, p. 108861, 2024.
  2. I. Heap, “Global perspective of herbicide-resistant weeds,” Pest management science, vol. 70, no. 9, pp. 1306–1315, 2014.
  3. B. L. Steward, L. F. Tian, and L. Tang, “Distance–based control system for machine vision–based selective spraying,” Transactions of the ASAE, vol. 45, no. 5, p. 1255, 2002.
  4. O. Bawden, J. Kulk, R. Russell, C. McCool, A. English, F. Dayoub, C. Lehnert, and T. Perez, “Robot for weed species plant‐specific management,” Journal of Field Robotics, vol. 34, pp. 1179–1199, 2017.
  5. C.-L. Chang, B.-X. Xie, and S.-C. Chung, “Mechanical control with a deep learning method for precise weeding on a farm,” Agriculture, vol. 11, no. 11, p. 1049, 2021.
  6. X. Wu, S. Aravecchia, P. Lottes, C. Stachniss, and C. Pradalier, “Robotic weed control using automated weed and crop classification,” Journal of Field Robotics, vol. 37, no. 2, pp. 322–340, 2020.
  7. J. Ascard, P. Hatcher, B. Melander, M. Upadhyaya, and R. Blackshaw, “10 thermal weed control,” Non-chemical weed management: principles, concepts and technology, pp. 155–175, 2007.
  8. Y. Xiong, Y. Ge, Y. Liang, and S. Blackmore, “Development of a prototype robot and fast path-planning algorithm for static laser weeding,” Computers and Electronics in Agriculture, vol. 142, pp. 494–503, 2017.
  9. A. Ahmadi, M. Halstead, and C. McCool, “Bonnbot-i: A precise weed management and crop monitoring platform,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 9202–9209.
  10. E.-C. Oerke, “Crop losses to pests,” The Journal of Agricultural Science, vol. 144, no. 1, pp. 31–43, 2006.
  11. R. L. Zimdahl, “Weed-crop competition: a review,” 2007.
  12. D. Slaughter, D. Giles, and D. Downey, “Autonomous robotic weed control systems: A review,” Computers and electronics in agriculture, vol. 61, no. 1, pp. 63–78, 2008.
  13. A. Guglielmini, A. Verdú, and E. Satorre, “Competitive ability of five common weed species in competition with soybean,” International journal of pest management, vol. 63, no. 1, pp. 30–36, 2017.
  14. P. Dentika, H. Ozier-Lafontaine, and L. Penet, “Weeds as pathogen hosts and disease risk for crops in the wake of a reduced use of herbicides: Evidence from yam (dioscorea alata) fields and colletotrichum pathogens in the tropics,” Journal of Fungi, vol. 7, no. 4, p. 283, 2021.
  15. H. Zhu, Y. Zhang, D. Mu, L. Bai, X. Wu, H. Zhuang, and H. Li, “Research on improved yolox weed detection based on lightweight attention module,” Crop Protection, vol. 177, p. 106563, 2024.
  16. M. Halstead, A. Ahmadi, C. Smitt, O. Schmittmann, and C. Mccool, “Crop agnostic monitoring driven by deep learning,” Frontiers in Plant Science, p. 2937, 2021.
  17. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2961–2969.
  18. M. Vahdanjoo, R. Gislum, and C. A. G. Sørensen, “Operational, economic, and environmental assessment of an agricultural robot in seeding and weeding operations,” AgriEngineering, vol. 5, no. 1, pp. 299–324, 2023.
  19. M. Zhou, H. Jiang, Z. Bing, H. Su, and A. Knoll, “Design and evaluation of the target spray platform,” International Journal of Advanced Robotic Systems, vol. 18, no. 2, p. 1729881421996146, 2021.
  20. C.-L. Chang, B.-X. Xie, and S.-C. Chung, “Mechanical control with a deep learning method for precise weeding on a farm,” Agriculture, vol. 11, no. 11, 2021. [Online]. Available: https://www.mdpi.com/2077-0472/11/11/1049
  21. M. Halstead, C. McCool, S. Denman, T. Perez, and C. Fookes, “Fruit quantity and ripeness estimation using a robotic vision system,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 2995–3002, 2018.
  22. A. Ahmadi, M. Halstead, and C. McCool, “Virtual temporal samples for recurrent neural networks: applied to semantic segmentation in agriculture,” in German conference on pattern recognition, 2021.
  23. M. Halstead, P. Zimmer, and C. McCool, “A cross-domain challenge with panoptic segmentation in agriculture,” The International Journal of Robotics Research, vol. 0, no. 0, p. 0, 2024.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets