Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Koopman Embedding for Robust Control of Complex Nonlinear Dynamical Systems (2405.09101v2)

Published 15 May 2024 in cs.RO, cs.SY, and eess.SY

Abstract: The discovery of linear embedding is the key to the synthesis of linear control techniques for nonlinear systems. In recent years, while Koopman operator theory has become a prominent approach for learning these linear embeddings through data-driven methods, these algorithms often exhibit limitations in generalizability beyond the distribution captured by training data and are not robust to changes in the nominal system dynamics induced by intrinsic or environmental factors. To overcome these limitations, this study presents an adaptive Koopman architecture capable of responding to the changes in system dynamics online. The proposed framework initially employs an autoencoder-based neural network that utilizes input-output information from the nominal system to learn the corresponding Koopman embedding offline. Subsequently, we augment this nominal Koopman architecture with a feed-forward neural network that learns to modify the nominal dynamics in response to any deviation between the predicted and observed lifted states, leading to improved generalization and robustness to a wide range of uncertainties and disturbances compared to contemporary methods. Extensive tracking control simulations, which are undertaken by integrating the proposed scheme within a Model Predictive Control framework, are used to highlight its robustness against measurement noise, disturbances, and parametric variations in system dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Strogatz, S. H. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (CRC press, 2018).
  2. Koopman, B. O. Hamiltonian systems and transformation in hilbert space. Proceedings of the National Academy of Sciences 17, 315–318 (1931).
  3. Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 93, 149–160 (2018).
  4. Koopman operator in systems and control (Springer, 2020).
  5. Modern koopman theory for dynamical systems. arXiv preprint arXiv:2102.12086 (2021).
  6. Spectral analysis of nonlinear flows. Journal of fluid mechanics 641, 115–127 (2009).
  7. A data–driven approximation of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science 25, 1307–1346 (2015).
  8. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of sciences 113, 3932–3937 (2016).
  9. Dynamic mode decomposition with control. SIAM Journal on Applied Dynamical Systems 15, 142–161 (2016).
  10. Sparse identification of nonlinear dynamics with control (sindyc). IFAC-PapersOnLine 49, 710–715 (2016).
  11. Global bilinearization and controllability of control-affine nonlinear systems: A koopman spectral approach. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 6107–6112 (IEEE, 2017).
  12. Advantages of bilinear koopman realizations for the modeling and control of systems with unknown dynamics. IEEE Robotics and Automation Letters 6, 4369–4376 (2021).
  13. Koopman nmpc: Koopman-based learning and nonlinear model predictive control of control-affine systems. In 2021 IEEE International Conference on Robotics and Automation (ICRA), 7350–7356 (IEEE, 2021).
  14. Deep learning for universal linear embeddings of nonlinear dynamics. Nature communications 9, 4950 (2018).
  15. Finding low-dimensional dynamical structure through variational auto-encoding dynamic mode decomposition. In 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), 1–6 (IEEE, 2019).
  16. Koopman operator learning using invertible neural networks. Journal of Computational Physics 112795 (2024).
  17. Real-time constrained tracking control of redundant manipulators using a koopman-zeroing neural network framework. IEEE Robotics and Automation Letters (2024).
  18. Episodic koopman learning of nonlinear robot dynamics with application to fast multirotor landing. In 2020 IEEE International Conference on Robotics and Automation (ICRA), 9216–9222 (2020).
  19. Koopnet: Joint learning of koopman bilinear models and function dictionaries with application to quadrotor trajectory tracking. In 2022 International Conference on Robotics and Automation (ICRA), 1344–1350 (IEEE, 2022).
  20. Nonlinear system identification of soft robot dynamics using koopman operator theory. In 2019 International Conference on Robotics and Automation (ICRA), 6244–6250 (IEEE, 2019).
  21. Modeling, reduction, and control of a helically actuated inertial soft robotic arm via the koopman operator. arXiv preprint arXiv:2011.07939 (2020).
  22. Castaño, M. L. et al. Control-oriented modeling of soft robotic swimmer with koopman operators. In 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 1679–1685 (IEEE, 2020).
  23. Data-efficient model learning for control with jacobian-regularized dynamic-mode decomposition. In Conference on Robot Learning, 2273–2283 (PMLR, 2023).
  24. Control-aware learning of koopman embedding models. In 2023 American Control Conference (ACC), 941–948 (IEEE, 2023).
  25. Nonlinear control methods for planar carangiform robot fish locomotion. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), vol. 1, 427–434 (IEEE, 2001).
  26. Global dynamics of a predator-prey system with holling type ii functional response. Nonlinear Analysis: Modelling and Control 16, 242–253 (2011).
  27. The mitogen-activated protein kinase (mapk) signaling pathway as a discovery target in stroke. Journal of Molecular Neuroscience 59, 90–98 (2016).
  28. Controllability assessment approach for chemical reactors: nonlinear control affine systems. Chemical Engineering Journal 92, 69–79 (2003).
  29. On the k+ p problem for a three-level quantum system: Optimality implies resonance. Journal of Dynamical and Control Systems 8, 547–572 (2002).
  30. Sub-riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer. Physical Review A 65, 032301 (2002).
  31. OSQP: an operator splitting solver for quadratic programs. Mathematical Programming Computation 12, 637–672 (2020). URL https://doi.org/10.1007/s12532-020-00179-2.
  32. Controlled synchronization of coupled pendulums by koopman model predictive control. Control Engineering Practice 139, 105629 (2023).
  33. Nonlinear dynamics of the frenkel–kontorova model. Physics Reports 306, 1–108 (1998).
  34. Ogata, K. et al. Modern control engineering, vol. 5 (Prentice hall Upper Saddle River, NJ, 2010).
  35. Surana, A. Koopman operator based observer synthesis for control-affine nonlinear systems. In 2016 IEEE 55th Conference on Decision and Control (CDC), 6492–6499 (IEEE, 2016).
  36. Robust tube-based model predictive control with koopman operators. Automatica 137, 110114 (2022).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com