Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the Local Landscape in the Triangle Network (2405.08939v1)

Published 14 May 2024 in quant-ph

Abstract: Characterizing the set of distributions that can be realized in the triangle network is a notoriously difficult problem. In this work, we investigate inner approximations of the set of local (classical) distributions of the triangle network. A quantum distribution that appears to be nonlocal is the Elegant Joint Measurement (EJM) [Entropy. 2019; 21(3):325], which motivates us to study distributions having the same symmetries as the EJM. We compare analytical and neural-network-based inner approximations and find a remarkable agreement between the two methods. Using neural network tools, we also conjecture network Bell inequalities that give a trade-off between the levels of correlation and symmetry that a local distribution may feature. Our results considerably strengthen the conjecture that the EJM is nonlocal.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. T. Fritz, Beyond bell’s theorem: correlation scenarios, New Journal of Physics 14, 103001 (2012).
  2. A. Pozas-Kerstjens, N. Gisin, and M.-O. Renou, Proofs of Network Quantum Nonlocality in Continuous Families of Distributions, Physical Review Letters 130, 090201 (2023).
  3. N. Gisin, Entanglement 25 years after quantum teleportation: Testing joint measurements in quantum networks, Entropy 21, 10.3390/e21030325 (2019a).
  4. A. Tavakoli, N. Gisin, and C. Branciard, Bilocal bell inequalities violated by the quantum elegant joint measurement, Phys. Rev. Lett. 126, 220401 (2021).
  5. R. F. Werner, Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model, Phys. Rev. A 40, 4277 (1989).
  6. N. Gisin, Entanglement 25 years after quantum teleportation: Testing joint measurements in quantum networks, Entropy 21, 10.3390/e21030325 (2019b).
  7. A. Girardin and N. Gisin, Violation of the Finner inequality in the four-output triangle network, Physical Review A 108, 042213 (2023).
  8. H. Finner, A Generalization of Holder’s Inequality and Some Probability Inequalities, The Annals of Probability 20, 1893 (1992).
  9. J. Henson, R. Lal, and M. F. Pusey, Theory-independent limits on correlations from generalized bayesian networks, New Journal of Physics 16, 113043 (2014).
  10. T. C. Fraser and E. Wolfe, Causal compatibility inequalities admitting quantum violations in the triangle structure, Phys. Rev. A 98, 022113 (2018).
  11. M. Weilenmann and R. Colbeck, Non-Shannon inequalities in the entropy vector approach to causal structures, Quantum 2, 57 (2018).
  12. Data and computational appendix, updated on April 26th, 2024.
  13. D. Rosset, N. Gisin, and E. Wolfe, Universal bound on the cardinality of local hidden variables in networks, Quantum Information and Computation 18, 10.26421/QIC18.11-12 (2017).
Citations (1)

Summary

We haven't generated a summary for this paper yet.