Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Interplay of Finite and Infinite Size Stability in Quadratic Bosonic Lindbladians (2405.08873v1)

Published 14 May 2024 in quant-ph and cond-mat.stat-mech

Abstract: We provide a framework for understanding dynamical metastability in open many-body systems of free bosons, whereby the dynamical stability properties of the system in the infinite-size (thermodynamic) limit may sharply differ from those of any finite-size truncation, and anomalous transient dynamics may arise. By leveraging pseudospectral techniques, we trace the discrepancy between asymptotic and transient dynamics to the non-normality of the underlying quadratic bosonic Lindbladian (QBL) generator, and show that two distinct flavors of dynamical metastability can arise. QBLs exhibiting type I dynamical metastability, previously discussed in the context of anomalous transient amplification [Phys. Rev. Lett. 127, 245701 (2021)], are dynamically unstable in the infinite-size limit, yet stable once open boundaries are imposed. Type II-dynamically metastable QBLs, which we uncover in this work, are dynamically stable for infinite size, but become unstable under open boundary conditions for arbitrary finite system size. We exhibit representative models for both types of metastability in the dissipative, as well as the limiting closed-system (Hamiltonian) settings, and analyze distinctive physical behavior they can engender. We show that dynamical metastability manifests itself in the generation of entanglement entropy, by way of a transient which reflects the stability phase of the infinite (rather than the actual finite) system and, as a result, is directly tied to the emergence of super-volume scaling in type I systems. Finally, we demonstrate how, even in Hermitian, and especially in highly non-normal regimes, the spectral properties of an infinite-size QBL are reflected in the linear response functions of the corresponding finite QBLs, by way of resonant pseudospectral modes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. M. Barber, Phase Transitions and Critical Phenomena, Vol. 8, edited by C. Domb and J. Lebowitz (Academic Press, New York, 1983).
  2. A. L. Kuzemski, Thermodynamic limit in statistical physics, Int. J. Mod. Phys. B 28, 1430004 (2014).
  3. P. Palacios, Had we but world enough, and time… but we don’t!: Justifying the thermodynamic and infinite-time limits in statistical mechanics, Found. Phys. 48, 526 (2018).
  4. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).
  5. G. Lindblad, On the generators of quantum dynamical semigroups, Commun. in Math. Phys. 48, 119 (1976).
  6. Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Phys. 69, 249 (2020).
  7. C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70, 947 (2007).
  8. A. Mostafazadeh, Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43, 205; 2814; 3944 (2002).
  9. J. P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (The MIT Press, Cambridge, Massachusetts, 1986).
  10. V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa Torres, Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points, Phys. Rev. B 97, 121401 (2018).
  11. S. Yao and Z. Wang, Edge States and Topological Invariants of Non-Hermitian Systems, Phys. Rev. Lett. 121, 086803 (2018).
  12. N. Hatano and D. R. Nelson, Localization Transitions in Non-Hermitian Quantum Mechanics, Phys. Rev. Lett. 77, 570 (1996).
  13. L. N. Trefethen and M. Embree, in Spectra and pseudospectra: The behavior of nonormal matrices and operators (Princeton University Press, 2005).
  14. A. Böttcher and B. Silbermann, in Introduction to Large Truncated Toeplitz Matrices (Springer Science & Business Media, 2012).
  15. T. Prosen and T. H. Seligman, Quantization over boson operator spaces, J. Phys. A 43, 392004 (2010).
  16. T. Barthel and Y. Zhang, Solving quasi-free and quadratic Lindblad master equations for open fermionic and bosonic systems, J. Stat. Mech. 2022, 113101 (2022).
  17. A. McDonald, T. Pereg-Barnea, and A. A. Clerk, Phase-dependent chiral transport and effective non-Hermitian dynamics in a bosonic Kitaev-Majorana chain, Phys. Rev. X 8, 041031 (2018).
  18. D. Porras and S. Fernández-Lorenzo, Topological amplification in photonic lattices, Phys. Rev. Lett. 122, 143901 (2019).
  19. C. C. Wanjura, M. Brunelli, and A. Nunnenkamp, Topological framework for directional amplification in driven-dissipative cavity arrays, Nat. Commun. 11, 3149 (2020).
  20. V. P. Flynn, E. Cobanera, and L. Viola, Topology by Dissipation: Majorana Bosons in Metastable Quadratic Markovian Dynamics, Phys. Rev. Lett. 127, 245701 (2021).
  21. V. P. Flynn, E. Cobanera, and L. Viola, Topological zero modes and edge symmetries of metastable Markovian bosonic systems, Phys. Rev. B 108, 214312 (2023).
  22. L. C. Venuti and P. Zanardi, Dynamical response theory for driven-dissipative quantum systems, Phys. Rev. A 93, 032101 (2016).
  23. S. C. Reddy, P. J. Schmid, and D. S. Henningson, Pseudospectra of the Orr-Sommerfeld operator, SIAM J. Appl. Math. 53, 15 (1993).
  24. P. J. Schmid, Linear stability theory and bypass transition in shear flows, Phys. Plasmas 7, 1788 (2000).
  25. J. S. Baggett, T. A. Driscoll, and L. N. Trefethen, A mostly linear model of transition to turbulence, Phys. Fluids 7, 833 (1995).
  26. N. Okuma and M. Sato, Hermitian zero modes protected by nonnormality: Application of pseudospectra, Phys. Rev. B 102, 014203 (2020).
  27. M. Žnidarič, Solvable non-Hermitian skin effect in many-body unitary dynamics, Phys. Rev. Res. 4, 033041 (2022).
  28. M. Žnidarič, Phantom relaxation rate of the average purity evolution in random circuits due to Jordan non-Hermitian skin effect and magic sums, Phys. Rev. Res. 5, 033145 (2023).
  29. M. G. Genoni, L. Lami, and A. Serafini, Conditional and unconditional gaussian quantum dynamics, Contemp. Phys. 57, 331 (2016).
  30. R. W. Boyd, Nonlinear Optics (Academic Press, 4th Edition, 2020).
  31. Note that this condition is sufficient, but not necessary. One may verify that a necessary and sufficient condition for ℒℒ{\cal L}caligraphic_L to be unital is that Tr⁢(𝝉3⁢(𝐌+𝐌T))=0Trsubscript𝝉3𝐌superscript𝐌𝑇0\text{Tr}(\bm{\tau}_{3}(\mathbf{M}+\mathbf{M}^{T}))=0Tr ( bold_italic_τ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( bold_M + bold_M start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ) ) = 0.
  32. P. D. Johnson, F. Ticozzi, and L. Viola, General fixed points of quasi-local frustration-free quantum semigroups: From invariance to stabilization, Quant. Inf. Comput. 16, 657 (2016).
  33. V. P. Flynn, E. Cobanera, and L. Viola, Deconstructing effective non-Hermitian dynamics in quadratic bosonic Hamiltonians, New J. Phys. 22, 083004 (2020a).
  34. Y. Kawaguchi and M. Ueda, Spinor Bose-Einstein Condensates, Phys. Rep. 520, 253 (2012).
  35. F. Toscano and F. Nicacio, Thermal equilibrium in Gaussian dynamical semigroups, Phys. Rev. A 106, 062207 (2022).
  36. V. V. Albert and L. Jiang, Symmetries and conserved quantities in Lindblad master equations, Phys. Rev. A 89, 022118 (2014).
  37. R. Barnett, Edge-state instabilities of bosons in a topological band, Phys. Rev. A 88, 063631 (2013).
  38. T. Ramos, J. J. García-Ripoll, and D. Porras, Topological input-output theory for directional amplification, Phys. Rev. A 103, 033513 (2021).
  39. C. C. Wanjura, M. Brunelli, and A. Nunnenkamp, Correspondence between Non-Hermitian Topology and Directional Amplification in the Presence of Disorder, Phys. Rev. Lett. 127, 213601 (2021).
  40. M. Brunelli, C. C. Wanjura, and A. Nunnenkamp, Restoration of the non-Hermitian bulk-boundary correspondence via topological amplification, SciPost Phys. 15, 173 (2023).
  41. T. Mori and T. Shirai, Resolving a Discrepancy between Liouvillian Gap and Relaxation Time in Boundary-Dissipated Quantum Many-Body Systems, Phys. Rev. Lett. 125, 230604 (2020).
  42. F. Yang, Q.-D. Jiang, and E. J. Bergholtz, Liouvillian skin effect in an exactly solvable model, Phys. Rev. Res. 4, 023160 (2022).
  43. Imposing OBCs in this system can be done in several ways. Here, we will do so in such a way that site-local dissipative processes are unaffected while all dissipative couplings across sites 1111 and N𝑁Nitalic_N vanish. Since terms like \sum@⁢\slimits@j⁢Γa⁢𝒟⁢[aj+aj+1]\sum@subscript\slimits@𝑗subscriptΓ𝑎𝒟delimited-[]subscript𝑎𝑗subscript𝑎𝑗1\sum@\slimits@_{j}\Gamma_{a}\mathcal{D}[a_{j}+a_{j+1}]start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT caligraphic_D [ italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ] (and similarly for b𝑏bitalic_b) mediate both a dissipative coupling of strength ΓasubscriptΓ𝑎\Gamma_{a}roman_Γ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT and an additional site-local loss of rate 2⁢Γa2subscriptΓ𝑎2\Gamma_{a}2 roman_Γ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT, the only way to accomplish this is to physically “cleave” the common bath that couples to sites 1111 and N𝑁Nitalic_N (see Fig. 3), such that each maintains a loss rate of 2⁢Γa2subscriptΓ𝑎2\Gamma_{a}2 roman_Γ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT in addition to the intrinsic local loss κasubscript𝜅𝑎\kappa_{a}italic_κ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT. That is, we first symmetrize the incoherent coupling according to \sum@⁢\slimits@j⁢𝒟⁢[aj+aj+1]=12⁢\sum@⁢\slimits@j⁢(𝒟⁢[aj+aj+1]+𝒟⁢[aj−1+aj])\sum@subscript\slimits@𝑗𝒟delimited-[]subscript𝑎𝑗subscript𝑎𝑗112\sum@subscript\slimits@𝑗𝒟delimited-[]subscript𝑎𝑗subscript𝑎𝑗1𝒟delimited-[]subscript𝑎𝑗1subscript𝑎𝑗\sum@\slimits@_{j}\mathcal{D}[a_{j}+a_{j+1}]=\frac{1}{2}\sum@\slimits@_{j}% \left(\mathcal{D}[a_{j}+a_{j+1}]+\mathcal{D}[a_{j-1}+a_{j}]\right)start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT caligraphic_D [ italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ] = divide start_ARG 1 end_ARG start_ARG 2 end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( caligraphic_D [ italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT italic_j + 1 end_POSTSUBSCRIPT ] + caligraphic_D [ italic_a start_POSTSUBSCRIPT italic_j - 1 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ] ), and impose a0=aN+1=0subscript𝑎0subscript𝑎𝑁10a_{0}=a_{N+1}=0italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_N + 1 end_POSTSUBSCRIPT = 0 (similarly for the b𝑏bitalic_b-dissipator). Altogether, this process amounts to passing from a block-circulant GKLS matrix for PBCs to a block-Toeplitz one for OBCs.
  44. A. McDonald and A. A. Clerk, Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics, Nat. Commun. 11, 5382 (2020).
  45. V. P. Flynn, E. Cobanera, and L. Viola, Restoring number conservation in quadratic bosonic Hamiltonians with dualities, Europhys. Lett. 131, 40006 (2020b).
  46. H.-C. Jiang, Z. Wang, and L. Balents, Identifying topological order by entanglement entropy, Nat. Phys. 8, 902 (2012).
  47. X.-G. Wen, Choreographed entanglement dances: Topological states of quantum matter, Science 363, eaal3099 (2019).
  48. E. Bianchi, L. Hackl, and N. Yokomizo, Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate, J. High Energ. Phys 2018, 25 (2018).
  49. G. Palma and L. Hackl, Linear growth of the entanglement entropy for quadratic Hamiltonians and arbitrary initial states, SciPost Phys. 12, 021 (2022).
  50. G. Adesso and F. Illuminati, Entanglement in continuous-variable systems: Recent advances and current perspectives, J. Phys. A 40, 7821 (2010).
  51. K. Kawabata, T. Numasawa, and S. Ryu, Entanglement phase transition induced by the non-Hermitian skin effect, Phys. Rev. X 13, 021007 (2023).
  52. T. Prosen, Spectral theorem for the Lindblad equation for quadratic open fermionic systems, J. Stat. Mech. , 07020 (2010).
  53. The pseudoresonant behavior we describe may be seen for arbitrary Hermitian dynamical matrices with driving frequencies in the neighborhood of its eigenvalues. However, the Toeplitz structure allows us to interpret the pseudoresonant behavior as the imprint of the infinite-size limit on the finite system.
  54. G. Adesso, A. Serafini, and F. Illuminati, Extremal entanglement and mixedness in continuous variable systems, Phys. Rev. A 70, 022318 (2004).
  55. H. Xu, An SVD-like matrix decomposition and its applications, Lin. Alg. Appl. 368, 1 (2003).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com