Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-testing tilted strategies for maximal loophole-free nonlocality (2405.08743v2)

Published 14 May 2024 in quant-ph

Abstract: The degree of experimentally attainable nonlocality, as gauged by the loophole-free or effective violation of Bell inequalities, remains severely limited due to inefficient detectors. We address an experimentally motivated question: Which quantum strategies attain the maximal loophole-free nonlocality in the presence of inefficient detectors? For any Bell inequality and any specification of detection efficiencies, the optimal strategies are those that maximally violate a tilted version of the Bell inequality in ideal conditions. In the simplest scenario, we demonstrate that the quantum strategies that maximally violate the doubly-tilted versions of Clauser-Horne-Shimony-Holt inequality are unique up to local isometries. We utilize a Jordan's lemma and Gr\"obner basis-based proof technique to analytically derive self-testing statements for the entire family of doubly-tilted CHSH inequalities and numerically demonstrate their robustness. These results enable us to reveal the insufficiency of even high levels of the Navascu\'es--Pironio--Ac\'in hierarchy to saturate the maximum quantum violation of these inequalities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics Physique Fizika 1, 195 (1964).
  2. A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
  3. D. Mayers and A. Yao, Quantum cryptography with imperfect apparatus, in Proceedings 39th Annual Symposium on Foundations of Computer Science (IEEE, Los Alamitos, CA, 1998) p. 503.
  4. J. Barrett, L. Hardy, and A. Kent, No signaling and quantum key distribution, Phys. Rev. Lett. 95, 010503 (2005a).
  5. Optical fiber loss and attenuation, https://www.fiberoptics4sale.com/blogs/archive-posts/95048006-optical-fiber-loss-and-attenuation (2022).
  6. A. Garg and N. D. Mermin, Detector inefficiencies in the Einstein-Podolsky-Rosen experiment, Phys. Rev. D 35, 3831 (1987).
  7. P. H. Eberhard, Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment, Phys. Rev. A 47, R747 (1993).
  8. T. Vértesi, S. Pironio, and N. Brunner, Closing the detection loophole in Bell experiments using qudits, Phys. Rev. Lett. 104, 060401 (2010).
  9. A. Chaturvedi, G. Viola, and M. Pawłowski, Extending loophole-free nonlocal correlations to arbitrarily large distances, npj Quantum Information 10, 7 (2024).
  10. P. H. Eberhard and P. Rosselet, Bell’s theorem based on a generalized EPR criterion of reality, Found. Phys. 25, 91 (1995).
  11. C. Branciard, Detection loophole in Bell experiments: How postselection modifies the requirements to observe nonlocality, Phys. Rev. A 83, 032123 (2011).
  12. C. Bamps and S. Pironio, Sum-of-squares decompositions for a family of Clauser-Horne-Shimony-Holt-like inequalities and their application to self-testing, Phys. Rev. A 91, 052111 (2015).
  13. A. Acín, S. Massar, and S. Pironio, Randomness versus nonlocality and entanglement, Phys. Rev. Lett. 108, 100402 (2012).
  14. R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics (Springer New York, 2013).
  15. M. Araújo, F. Hirsch, and M. T. Quintino, Bell nonlocality with a single shot, Quantum 4, 353 (2020).
  16. P. Mironowicz, Semi-definite programming and quantum information, Journal of Physics A: Mathematical and Theoretical  (2023).
  17. N. Gigena, G. Scala, and A. Mandarino, Revisited aspects of the local set in CHSH Bell scenario, International Journal of Quantum Information 10.1142/s0219749923400051 (2022).
  18. A. Cabello and J.-A. Larsson, Minimum detection efficiency for a loophole-free atom-photon Bell experiment, Phys. Rev. Lett. 98, 220402 (2007).
  19. T. Cope and R. Colbeck, Bell inequalities from no-signaling distributions, Phys. Rev. A 100, 022114 (2019).
  20. I. Šupić and J. Bowles, Self-testing of quantum systems: a review, Quantum 4, 337 (2020a).
  21. M. Navascués, S. Pironio, and A. Acín, Bounding the set of quantum correlations, Phys. Rev. Lett. 98, 010401 (2007).
  22. A. Garner and M. Araújo, Moment, https://github.com/ajpgarner/moment (2023).
  23. J. Löfberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference (Taipei, Taiwan, 2004) pp. 284–289, https://yalmip.github.io/.
  24. L. Masanes, Extremal quantum correlations for N parties with two dichotomic observables per site (2005), arXiv:quant-ph/0512100 [quant-ph] .
  25. I. Šupić and J. Bowles, Self-testing of quantum systems: a review, Quantum 4, 337 (2020b).
  26. E. Panwar, P. Pandya, and M. Wieśniak, An elegant scheme of self-testing for multipartite Bell inequalities, npj Quantum Information 9, 71 (2023).
  27. E. P. Lobo, J. Pauwels, and S. Pironio, Certifying long-range quantum correlations through routed Bell tests, Quantum 8, 1332 (2024).
  28. G. Scala, S. A. Ghoreishi, and M. Pawłowski, Advantages of quantum communication revealed by the reexamination of hyperbit theory limitations, Phys. Rev. A 109, 022230 (2024).
  29. R. Augusiak, M. Demianowicz, and P. Horodecki, Universal observable detecting all two-qubit entanglement and determinant-based separability tests, Phys. Rev. A 77, 030301 (2008).

Summary

We haven't generated a summary for this paper yet.