Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling of Time-varying Wireless Communication Channel with Fading and Shadowing (2405.08199v1)

Published 13 May 2024 in cs.LG and eess.SP

Abstract: The real-time quantification of the effect of a wireless channel on the transmitting signal is crucial for the analysis and the intelligent design of wireless communication systems for various services. Recent mechanisms to model channel characteristics independent of coding, modulation, signal processing, etc., using deep learning neural networks are promising solutions. However, the current approaches are neither statistically accurate nor able to adapt to the changing environment. In this paper, we propose a new approach that combines a deep learning neural network with a mixture density network model to derive the conditional probability density function (PDF) of receiving power given a communication distance in general wireless communication systems. Furthermore, a deep transfer learning scheme is designed and implemented to allow the channel model to dynamically adapt to changes in communication environments. Extensive experiments on Nakagami fading channel model and Log-normal shadowing channel model with path loss and noise show that the new approach is more statistically accurate, faster, and more robust than the previous deep learning-based channel models.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com