Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tunable Generation of Spatial Entanglement in Nonlinear Waveguide Arrays (2405.08176v3)

Published 13 May 2024 in quant-ph, cond-mat.mes-hall, and physics.optics

Abstract: Harnessing high-dimensional entangled states of light presents a frontier for advancing quantum information technologies, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the spatial degree of freedom stands out as particularly suited for on-chip integration. But while traditional demonstrations produce and manipulate path-entangled states sequentially with discrete optical elements, continuously-coupled nonlinear waveguide systems offer a promising alternative where photons can be generated and interfere along the entire propagation length, unveiling novel capabilities within a reduced footprint. Here we exploit this concept to implement a compact and reconfigurable source of path-entangled photon pairs based on parametric down-conversion in semiconductor nonlinear waveguides arrays. We use a double-pump configuration to engineer the output quantum state and implement various types of spatial correlations, exploiting a quantum interference effect between the biphoton state generated in each pumped waveguide. This demonstration, at room temperature and telecom wavelength, illustrates the potential of continuously-coupled systems as a promising alternative to discrete multi-component quantum circuits for leveraging the high-dimensional spatial degree of freedom of photons.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. I. Walmsley, Quantum optics: Science and technology in a new light, Science 348, 525 (2015).
  2. M. Erhard, M. Krenn, and A. Zeilinger, Advances in high-dimensional quantum entanglement, Nature Reviews Physics 2, 365 (2020).
  3. X.-D. Yu, I. Veeren, and O. Gühne, Characterizing high-dimensional quantum contextuality, Phys. Rev. A 109, L030201 (2024).
  4. A. S. Solntsev and A. A. Sukhorukov, Path-entangled photon sources on nonlinear chips, Reviews in Physics 2, 19 (2017).
  5. E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409, 46 (2001).
  6. E. Farhi and S. Gutmann, Quantum computation and decision trees, Phys. Rev. A 58, 915 (1998).
  7. F. Klauck, M. Heinrich, and A. Szameit, Photonic two-particle quantum walks in Su–Schrieffer–Heeger lattices, Photonics Research 9, A1 (2021).
  8. F. Baboux, G. Moody, and S. Ducci, Nonlinear integrated quantum photonics with AlGaAs, Optica 10, 917 (2023).
  9. See Supplemental Material for additional details on the experiment and the theoretical analysis.
  10. A. Brodutch, R. Marchildon, and A. S. Helmy, Dynamically reconfigurable sources for arbitrary Gaussian states in integrated photonics circuits, Optics Express 26, 17635 (2018).
  11. F. S. Piccioli, A. Szameit, and I. Carusotto, Topologically protected frequency control of broadband signals in dynamically modulated waveguide arrays, Physical Review A 105, 053519 (2022).

Summary

We haven't generated a summary for this paper yet.