Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

A logical qubit-design with geometrically tunable error-resistibility (2405.08138v1)

Published 13 May 2024 in quant-ph and cond-mat.other

Abstract: Breaking the error-threshold would mark a milestone in establishing quantum advantage for a wide range of relevant problems. One possible route is to encode information redundantly in a logical qubit by combining several noisy qubits, providing an increased robustness against external perturbations. We propose a setup for a logical qubit built from superconducting qubits (SCQs) coupled to a microwave cavity-mode. Our design is based on a recently discovered geometric stabilizing mechanism in the Bose-Hubbard wheel (BHW), which manifests as energetically well-separated clusters of many-body eigenstates. We investigate the impact of experimentally relevant perturbations between SCQs and the cavity on the spectral properties of the BHW. We show that even in the presence of typical fabrication uncertainties, the occurrence and separation of clustered many-body eigenstates is extremely robust. Introducing an additional, frequency-detuned SCQ coupled to the cavity yields duplicates of these clusters, that can be split up by an on-site potential. We show that this allows to (i) redundantly encode two logical qubit states that can be switched and read out efficiently and (ii) can be separated from the remaining many-body spectrum via geometric stabilization. We demonstrate at the example of an X-gate that the proposed logical qubit reaches single qubit-gate fidelities $>0.999$ in experimentally feasible temperature regimes $\sim10-20\,\mathrm{mK}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. L. K. Grover, A fast quantum mechanical algorithm for database search (1996), arXiv:quant-ph/9605043 [quant-ph] .
  2. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Review 41, 303 (1999), https://doi.org/10.1137/S0036144598347011 .
  3. J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  4. W. G. Unruh, Maintaining coherence in quantum computers, Phys. Rev. A 51, 992 (1995).
  5. E. Knill, R. Laflamme, and W. H. Zurek, Resilient quantum computation, Science 279, 342 (1998), https://www.science.org/doi/pdf/10.1126/science.279.5349.342 .
  6. J. Preskill, Fault-tolerant quantum computation, in Introduction to Quantum Computation and Information (1998) pp. 213–269.
  7. D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error rate, SIAM Journal on Computing 38, 1207 (2008), https://doi.org/10.1137/S0097539799359385 .
  8. Y. Li and S. C. Benjamin, Efficient variational quantum simulator incorporating active error minimization, Phys. Rev. X 7, 021050 (2017).
  9. K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
  10. A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A 54, 1098 (1996).
  11. A. Steane, Multiple-particle interference and quantum error correction, Proceedings of the Royal Society A 452, 10.1098/rspa.1996.0136 (1996).
  12. D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, Proceedings of Symposia in Applied Mathematics 68, 10.1090/psapm/068 (2010).
  13. A. Y. Kitaev, Quantum computations: algorithms and error correction, Russian Mathematical Surveys 52, 1191 (1997).
  14. A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2 (2003).
  15. Z. Cai, Multi-exponential error extrapolation and combining error mitigation techniques for nisq applications, npj Quantum Information 7, 80 (2021).
  16. IBM, The hardware and software for the era of quantum utility is here (2023).
  17. D. P. DiVincenzo, Fault-tolerant architectures for superconducting qubits, Physica Scripta 2009, 014020 (2009).
  18. J. M. Gambetta, J. M. Chow, and M. Steffen, Building logical qubits in a superconducting quantum computing system, npj Quantum Information 3, 2 (2017).
  19. P. G. J. van Dongen, J. A. Vergés, and D. Vollhardt, The hubbard star, Zeitschrift für Physik B Condensed Matter 84, 383 (1991).
  20. E. J. G. G. Vidal, R. P. A. Lima, and M. L. Lyra, Bose-einstein condensation in the infinitely ramified star and wheel graphs, Phys. Rev. E 83, 061137 (2011).
  21. M. Rigol and A. Muramatsu, Emergence of quasicondensates of hard-core bosons at finite momentum, Phys. Rev. Lett. 93, 230404 (2004).
  22. M. Rigol and A. Muramatsu, Ground-state properties of hard-core bosons confined on one-dimensional optical lattices, Phys. Rev. A 72, 013604 (2005).
  23. E. H. Lieb, Exact analysis of an interacting bose gas. ii. the excitation spectrum, Phys. Rev. 130, 1616 (1963).
  24. E. H. Lieb and W. Liniger, Exact analysis of an interacting bose gas. i. the general solution and the ground state, Phys. Rev. 130, 1605 (1963).
  25. F. Tennie, V. Vedral, and C. Schilling, Universal upper bounds on the bose-einstein condensate and the hubbard star, Phys. Rev. B 96, 064502 (2017).
  26. S. S. Material, Link will be added.
  27. T. E. Roth, R. Ma, and W. C. Chew, The transmon qubit for electromagnetics engineers: An introduction, IEEE Antennas and Propagation Magazine 65, 8–20 (2023).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.