Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits (2405.08136v5)

Published 13 May 2024 in quant-ph

Abstract: It is known that the matrices that can be exactly represented by a multiqubit circuit over the Toffoli+Hadamard, Clifford+$T$, or, more generally, Clifford-cyclotomic gate set are precisely the unitary matrices with entries in the ring $\mathbb{Z}[1/2,\zeta_k]$, where $k$ is a positive integer that depends on the gate set and $\zeta_k$ is a primitive $2k$-th root of unity. In the present paper, we establish an analogous correspondence for qutrits. We define the multiqutrit Clifford-cyclotomic gate set of degree $3k$ by extending the classical qutrit gates $X$, $CX$, and $CCX$ with the Hadamard gate $H$ and the $T_k$ gate $T_k=\mathrm{diag}(1,\omega_k, \omega_k2)$, where $\omega_k$ is a primitive $3k$-th root of unity. This gate set is equivalent to the qutrit Toffoli+Hadamard gate set when $k=1$, and to the qutrit Clifford+$T_k$ gate set when $k>1$. We then prove that a $3n\times 3n$ unitary matrix $U$ can be represented by an $n$-qutrit circuit over the Clifford-cyclotomic gate set of degree $3k$ if and only if the entries of $U$ lie in the ring $\mathbb{Z}[1/3,\omega_k]$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. Preprint available from arXiv:2305.07720.
  2. Preprint available from arXiv:2311.07741.
  3. In Martin Kutrib & Uwe Meyer, editors: Reversible Computation, Springer Nature Switzerland, Cham, pp. 169–209.
  4. Matthew Amy, Andrew N. Glaudell & Neil J. Ross (2020): Number-theoretic characterizations of some restricted Clifford+T𝑇Titalic_T circuits. Quantum 4, p. 252, 10.22331/q-2020-04-06-252. arXiv:https://arxiv.org/abs/1908.06076. Available from arXiv:1908.06076.
  5. Hussain Anwar, Earl T Campbell & Dan E Browne (2012): Qutrit magic state distillation. New Journal of Physics 14(6), p. 063006, 10.1088/1367-2630/14/6/063006. Available at https://dx.doi.org/10.1088/1367-2630/14/6/063006.
  6. Alex Bocharov (2016): A Note on Optimality of Quantum Circuits over Metaplectic Basis. Quantum Information and Computation 18, 10.26421/QIC18.1-2-1.
  7. Quantum Information and Computation 16, pp. 862–884, 10.26421/QIC16.9-10-8.
  8. Alex Bocharov, Martin Roetteler & Krysta M. Svore (2017): Factoring with qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures. Phys. Rev. A 96, p. 012306, 10.1103/PhysRevA.96.012306.
  9. Earl T. Campbell, Hussain Anwar & Dan E. Browne (2012): Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes. Phys. Rev. X 2, p. 041021, 10.1103/PhysRevX.2.041021.
  10. Nature Communications 13(1), p. 1166, 10.1038/s41467-022-28767-x. Available at https://doi.org/10.1038/s41467-022-28767-x.
  11. Shawn X. Cui & Zhenghan Wang (2015): Universal quantum computation with metaplectic anyons. Journal of Mathematical Physics 56(3), p. 032202, 10.1063/1.4914941.
  12. Brett Giles & Peter Selinger (2013): Exact synthesis of multiqubit Clifford+T𝑇Titalic_T circuits. Physical Review A 87(3), p. 032332, 10.1103/PhysRevA.87.032332. Available at https://link.aps.org/doi/10.1103/PhysRevA.87.032332. Available from arXiv:1212.0506.
  13. Andrew N. Glaudell, Neil J. Ross & Jacob M. Taylor (2019): Canonical forms for single-qutrit Clifford+T𝑇Titalic_T operators. Annals of Physics 406, pp. 54–70, https://doi.org/10.1016/j.aop.2019.04.001. Available at https://www.sciencedirect.com/science/article/pii/S0003491619300909. Available from arXiv:1803.05047.
  14. In François Le Gall & Tomoyuki Morimae, editors: 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022), Leibniz International Proceedings in Informatics (LIPIcs) 232, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 12:1–12:15, 10.4230/LIPIcs.TQC.2022.12. Available at https://drops.dagstuhl.de/opus/volltexte/2022/16519. Available from arXiv:2202.09235.
  15. Seth Evenson Murray Greylyn (2014): Generators and relations for the group U4⁢(ℤ⁢[1/2,i])subscriptU4ℤ12𝑖\mathrm{U}_{4}(\mathbb{Z}[1/\sqrt{2},i])roman_U start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( blackboard_Z [ 1 / square-root start_ARG 2 end_ARG , italic_i ] ). Master’s thesis, Dalhousie University. Available from arXiv:1408.6204.
  16. Mark Howard & Jiri Vala (2012): Qudit versions of the qubit π/8𝜋8\pi/8italic_π / 8 gate. Phys. Rev. A 86, p. 022316, 10.1103/PhysRevA.86.022316. Available at https://link.aps.org/doi/10.1103/PhysRevA.86.022316.
  17. Nature Communications 14(1), p. 2242, 10.1038/s41467-023-37375-2. Available at https://doi.org/10.1038/s41467-023-37375-2.
  18. Amolak Ratan Kalra, Dinesh Valluri & Michele Mosca (2024): Synthesis and Arithmetic of Single Qutrit Circuits. arXiv:https://arxiv.org/abs/2311.08696.
  19. Quantum Science and Technology 7(1), p. 015008, 10.1088/2058-9565/ac2d39. Available at https://dx.doi.org/10.1088/2058-9565/ac2d39.
  20. Alastair Kay (2018): Tutorial on the quantikz package. Available from arXiv:1809.03842.
  21. Vadym Kliuchnikov (2013): Synthesis of unitaries with Clifford+T𝑇Titalic_T circuits. arXiv preprint arXiv:1306.3200.
  22. Michael A. Nielsen & Isaac L. Chuang (2000): Quantum Computation and Quantum Information. Cambridge Series on Information and the Natural Sciences, Cambridge University Press, 10.1017/CBO9780511976667.
  23. Shiroman Prakash (2020): Magic state distillation with the ternary Golay code. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476(2241), p. 20200187, 10.1098/rspa.2020.0187. arXiv:https://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2020.0187.
  24. Physical Review A 98, p. 032304. Available from arXiv:1803.05047.
  25. Phys. Rev. X 8, p. 041007, 10.1103/PhysRevX.8.041007. Available at https://link.aps.org/doi/10.1103/PhysRevX.8.041007.
  26. Patrick Roy, John van de Wetering & Lia Yeh (2023): The Qudit ZH-Calculus: Generalised Toffoli+Hadamard and Universality. Electronic Proceedings in Theoretical Computer Science 384, pp. 142–170, 10.4204/eptcs.384.9. Available at https://doi.org/10.4204%2Feptcs.384.9.
  27. L. C. Washington (1982): Introduction to Cyclotomic Fields. Springer New York, NY.
  28. Phys. Rev. A 92, p. 022312, 10.1103/PhysRevA.92.022312. Available at https://link.aps.org/doi/10.1103/PhysRevA.92.022312.
  29. Quantum 6, p. 687, 10.22331/q-2022-04-13-687. Available at https://doi.org/10.22331%2Fq-2022-04-13-687.
  30. Lia Yeh & John van de Wetering (2022): Constructing all qutrit controlled Clifford+T𝑇Titalic_T gates in Clifford+T𝑇Titalic_T. In Claudio Antares Mezzina & Krzysztof Podlaski, editors: Reversible Computation, Springer International Publishing, Cham, pp. 28–50. Available from arXiv:2204.00552.
  31. Phys. Rev. Lett. 125, p. 180504, 10.1103/PhysRevLett.125.180504.
  32. Wei Zi, Qian Li & Xiaoming Sun (2023): Optimal Synthesis of Multi-Controlled Qudit Gates. In: 2023 60th ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 10.1109/DAC56929.2023.10247925.
Citations (2)

Summary

We haven't generated a summary for this paper yet.