Edge Computing for IoT: Novel Insights from a Comparative Analysis of Access Control Models (2405.07685v3)
Abstract: IoT edge computing positions computing resources closer to the data sources to reduce the latency, relieve the bandwidth pressure on the cloud, and enhance data security. Nevertheless, data security in IoT edge computing still faces critical threats (e.g., data breaches). Access control is fundamental for mitigating these threats. However, IoT edge computing introduces notable challenges for achieving resource-conserving, low-latency, flexible, and scalable access control. To review recent access control measures, we novelly organize them according to different data lifecycles--data collection, storage, and usage--and, meanwhile, review blockchain technology in this novel organization. In this way, we provide novel insights and envisage several potential research directions. This survey can help readers find gaps systematically and prompt the development of access control techniques in IoT edge computing under the intricacy of innovations in access control.
- C. Gomez, S. Chessa, A. Fleury, G. Roussos, and D. Preuveneers, “Internet of Things for enabling smart environments: A technology-centric perspective,” Journal of Ambient Intelligence and Smart Environments, vol. 11, no. 1, pp. 23–43, 2019.
- J. Chen and X. Ran, “Deep learning with edge computing: A review,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.
- W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.
- J. L. Hernández-Ramos, A. J. Jara, L. Marin, and A. F. Skarmeta, “Distributed capability-based access control for the Internet of Things,” Journal of Internet Services and Information Security, vol. 3, no. 3/4, pp. 1–16, 2013.
- D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli, “Proposed NIST standard for role-based access control,” ACM Transactions on Information and System Security, vol. 4, no. 3, pp. 224–274, 2001.
- V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M. Cogdell, A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone et al., “Guide to attribute based access control (ABAC) definition and considerations (draft),” NIST special publication, vol. 800, no. 162, pp. 1–54, 2013.
- R. Sandhu and J. Park, “Usage control: A vision for next generation access control,” in Computer Network Security: Second International Workshop on Mathematical Methods, Models, and Architectures for Computer Network Security, MMM-ACNS 2003, St. Petersburg, Russia, September 21-23, 2003. Proceedings 2. Springer, 2003, pp. 17–31.
- J. Park and R. Sandhu, “The UCONABC usage control model,” ACM Transactions on Information and System Security, vol. 7, no. 1, pp. 128–174, 2004.
- “Secure access control using groups on Azure AD,” https://learn.microsoft.com/en-us/azure/active-directory/develop/secure-group-access-control.
- A. Toninelli, R. Montanari, L. Kagal, and O. Lassila, “A semantic context-aware access control framework for secure collaborations in pervasive computing environments,” in International Semantic Web Conference. Springer, 2006, pp. 473–486.
- H. F. Atlam, M. A. Azad, M. O. Alassafi, A. A. Alshdadi, and A. Alenezi, “Risk-based access control model: A systematic literature review,” Future Internet, vol. 12, no. 6, p. 103, 2020.
- P. W. Fong, “Relationship-based access control: protection model and policy language,” in Proceedings of the first ACM Conference on Data and Application Security and Privacy, 2011, pp. 191–202.
- F. Almenárez, A. Marín, C. Campo, and C. García R, “TrustAC: Trust-based access control for pervasive devices,” in Security in Pervasive Computing: Second International Conference, SPC 2005, Boppard, Germany, April 6-8, 2005. Proceedings 2. Springer, 2005, pp. 225–238.
- P. N. Mahalle, P. A. Thakre, N. R. Prasad, and R. Prasad, “A fuzzy approach to trust based access control in Internet of Things,” in Wireless VITAE 2013. IEEE, 2013, pp. 1–5.
- A. Kayes, R. Kalaria, I. H. Sarker, M. S. Islam, P. A. Watters, A. Ng, M. Hammoudeh, S. Badsha, and I. Kumara, “A survey of context-aware access control mechanisms for cloud and fog networks: Taxonomy and open research issues,” Sensors, vol. 20, no. 9, p. 2464, 2020.
- P. Zhang, J. K. Liu, F. R. Yu, M. Sookhak, M. H. Au, and X. Luo, “A survey on access control in fog computing,” IEEE Communications Magazine, vol. 56, no. 2, pp. 144–149, 2018.
- S. Alnefaie, S. Alshehri, and A. Cherif, “A survey on access control in IoT: models, architectures and research opportunities,” International Journal of Security and Networks, vol. 16, no. 1, pp. 60–76, 2021.
- M. Rasori, M. L. Manna, P. Perazzo, and G. Dini, “A survey on attribute-based encryption schemes suitable for the Internet of Things,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8269–8290, 2022.
- I. Akaichi and S. Kirrane, “Usage control specification, enforcement, and robustness: A survey,” arXiv preprint arXiv:2203.04800, 2022.
- S. Pal, A. Dorri, and R. Jurdak, “Blockchain for IoT access control: Recent trends and future research directions,” Journal of Network and Computer Applications, p. 103371, 2022.
- I. Riabi, H. K. B. Ayed, and L. A. Saidane, “A survey on blockchain based access control for Internet of Things,” in 2019 15th International Wireless Communications & Mobile Computing Conference. IEEE, 2019, pp. 502–507.
- A. Khan, A. Ahmad, M. Ahmed, J. Sessa, and M. Anisetti, “Authorization schemes for Internet of Things: requirements, weaknesses, future challenges and trends,” Complex & Intelligent Systems, vol. 8, no. 5, pp. 3919–3941, 2022.
- S. Dramé-Maigné, M. Laurent, L. Castillo, and H. Ganem, “Centralized, distributed, and everything in between: Reviewing access control solutions for the IoT,” ACM Computing Surveys, vol. 54, no. 7, pp. 1–34, 2021.
- S. Ravidas, A. Lekidis, F. Paci, and N. Zannone, “Access control in Internet-of-Things: A survey,” Journal of Network and Computer Applications, vol. 144, pp. 79–101, 2019.
- T. Khalid, M. A. K. Abbasi, M. Zuraiz, A. N. Khan, M. Ali, R. W. Ahmad, J. J. Rodrigues, and M. Aslam, “A survey on privacy and access control schemes in fog computing,” International Journal of Communication Systems, vol. 34, no. 2, p. e4181, 2021.
- D. Liu, Z. Yan, W. Ding, and M. Atiquzzaman, “A survey on secure data analytics in edge computing,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4946–4967, 2019.
- A. Grünbacher, “POSIX Access Control Lists on Linux,” in USENIX Annual Technical Conference, FREENIX Track, vol. 259272, 2003.
- M. Dabbagh, K.-K. R. Choo, A. Beheshti, M. Tahir, and N. S. Safa, “A survey of empirical performance evaluation of permissioned blockchain platforms: Challenges and opportunities,” Computers & Security, vol. 100, p. 102078, 2021.
- L. Zhang, Y. Zou, W. Wang, Z. Jin, Y. Su, and H. Chen, “Resource allocation and trust computing for blockchain-enabled edge computing system,” Computers & Security, vol. 105, p. 102249, 2021.
- Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain challenges and opportunities: A survey,” International Journal of Web and Grid Services, vol. 14, no. 4, pp. 352–375, 2018.
- S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Business Review, 2008.
- G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014, pp. 1–32, 2014.
- E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al., “Hyperledger Fabric: A distributed operating system for permissioned blockchains,” in Proceedings of the Thirteenth EuroSys Conference, 2018, pp. 1–15.
- A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of cloud computing and internet of things: a survey,” Future Generation Computer Systems, vol. 56, pp. 684–700, 2016.
- W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, and C. Miao, “Federated learning in mobile edge networks: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.
- B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos, “Challenges and opportunities in edge computing,” in 2016 IEEE International Conference on Smart Cloud. IEEE, 2016, pp. 20–26.
- J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-edge-cloud orchestrated network computing paradigms: Transparent computing, mobile edge computing, fog computing, and cloudlet,” ACM Computing Surveys, vol. 52, no. 6, pp. 1–36, 2019.
- K. Cao, Y. Liu, G. Meng, and Q. Sun, “An overview on edge computing research,” IEEE Access, vol. 8, pp. 85 714–85 728, 2020.
- Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge computing security: State of the art and challenges,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1608–1631, 2019.
- W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge computing: A survey,” Future Generation Computer Systems, vol. 97, pp. 219–235, 2019.
- C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task offloading and resource allocation for ultra-reliable low-latency edge computing,” IEEE Transactions on Communications, vol. 67, no. 6, pp. 4132–4150, 2019.
- C. Kai, H. Zhou, Y. Yi, and W. Huang, “Collaborative cloud-edge-end task offloading in mobile-edge computing networks with limited communication capability,” IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 2, pp. 624–634, 2020.
- “The Importance of Data Lifecycle Management (DLM) and Best Practices,” https://www.computer.org/publications/tech-news/trends/the-importance-of-data-lifecycle-management, 2022.
- X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen, “Convergence of edge computing and deep learning: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 869–904, 2020.
- Z. Fan, W. Yang, F. Wu, J. Cao, and W. Shi, “Serving at the edge: An edge computing service architecture based on icn,” ACM Transactions on Internet Technology, vol. 22, no. 1, pp. 1–27, 2021.
- A. Bozorgchenani, D. Tarchi, and G. E. Corazza, “Centralized and distributed architectures for energy and delay efficient fog network-based edge computing services,” IEEE Transactions on Green Communications and Networking, vol. 3, no. 1, pp. 250–263, 2018.
- Z. Ning, P. Dong, X. Wang, S. Wang, X. Hu, S. Guo, T. Qiu, B. Hu, and R. Y. Kwok, “Distributed and dynamic service placement in pervasive edge computing networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 6, pp. 1277–1292, 2020.
- T. Wang, L. Qiu, A. K. Sangaiah, A. Liu, M. Z. A. Bhuiyan, and Y. Ma, “Edge-computing-based trustworthy data collection model in the Internet of Things,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4218–4227, 2020.
- S. D. C. Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati, “A data outsourcing architecture combining cryptography and access control,” in Proceedings of the 2007 ACM Workshop on Computer Security Architecture, 2007, pp. 63–69.
- P. I. R. Grammatikis, P. G. Sarigiannidis, and I. D. Moscholios, “Securing the Internet of Things: Challenges, threats and solutions,” Internet of Things, vol. 5, pp. 41–70, 2019.
- M. Dammak, S.-M. Senouci, M. A. Messous, M. H. Elhdhili, and C. Gransart, “Decentralized lightweight group key management for dynamic access control in IoT environments,” IEEE Transactions on Network and Service Management, vol. 17, no. 3, pp. 1742–1757, 2020.
- B. Jiang, G. Huang, T. Wang, J. Gui, and X. Zhu, “Trust based energy efficient data collection with unmanned aerial vehicle in edge network,” Transactions on Emerging Telecommunications Technologies, vol. 33, no. 6, p. e3942, 2022.
- H. F. Atlam, R. J. Walters, G. B. Wills, and J. Daniel, “Fuzzy logic with expert judgment to implement an adaptive risk-based access control model for IoT,” Mobile Networks and Applications, pp. 1–13, 2021.
- S. Dougherty, R. Tourani, G. Panwar, R. Vishwanathan, S. Misra, and S. Srikanteswara, “APECS: A distributed access control framework for pervasive edge computing services,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021, pp. 1405–1420.
- X. Zhou, D. He, J. Ning, M. Luo, and X. Huang, “AADEC: Anonymous and auditable distributed access control for edge computing services,” IEEE Transactions on Information Forensics and Security, pp. 1–1, 2022.
- L. Liu, C. Huang, D. Zhu, D. Liu, J. Ni, and X. S. Shen, “Secure and distributed access control for dynamic pervasive edge computing services,” in GLOBECOM 2022-2022 IEEE Global Communications Conference. IEEE, 2022, pp. 5487–5492.
- A. Alrawais, A. Alhothaily, C. Hu, X. Xing, and X. Cheng, “An attribute-based encryption scheme to secure fog communications,” IEEE Access, vol. 5, pp. 9131–9138, 2017.
- C. Zhang, M. Zhao, Y. Xu, T. Wu, Y. Li, L. Zhu, and H. Wang, “Achieving fuzzy matching data sharing for secure cloud-edge communication,” China Communications, vol. 19, no. 7, pp. 257–276, 2022.
- P. S. K. Oberko, V.-H. K. S. Obeng, and H. Xiong, “A survey on multi-authority and decentralized attribute-based encryption,” Journal of Ambient Intelligence and Humanized Computing, pp. 1–19, 2022.
- R. Sarma, C. Kumar, and F. A. Barbhuiya, “MACFI: A multi-authority access control scheme with efficient ciphertext and secret key size for fog-enhanced IoT,” Journal of Systems Architecture, vol. 123, p. 102347, 2022.
- S. Xu, J. Ning, Y. Li, Y. Zhang, G. Xu, X. Huang, and R. Deng, “Match in my way: Fine-grained bilateral access control for secure cloud-fog computing,” IEEE Transactions on Dependable and Secure Computing, 2020.
- R. Cheng, K. Wu, Y. Su, W. Li, W. Cui, and J. Tong, “An efficient ECC-based CP-ABE scheme for power IoT,” Processes, vol. 9, no. 7, p. 1176, 2021.
- S. Xu, J. Ning, X. Huang, J. Zhou, and R. H. Deng, “Server-aided bilateral access control for secure data sharing with dynamic user groups,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 4746–4761, 2021.
- A. Arfaoui, S. Cherkaoui, A. Kribeche, and S. M. Senouci, “Context-aware adaptive remote access for IoT applications,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 786–799, 2020.
- T. Ghosh, A. Roy, S. Misra, and N. S. Raghuwanshi, “CASE: A context-aware security scheme for preserving data privacy in IoT-enabled society 5.0,” IEEE Internet of Things Journal, vol. 9, no. 4, pp. 2497–2504, 2021.
- W. Zheng, B. Chen, and D. He, “An adaptive access control scheme based on trust degrees for edge computing,” Computer Standards & Interfaces, vol. 82, p. 103640, 2022.
- Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu, W. Shi, and H. Zhong, “OpenVDAP: An open vehicular data analytics platform for CAVs,” in 2018 IEEE 38th International Conference on Distributed Computing Systems, 2018, pp. 1310–1320.
- Q. Zhang, H. Zhong, J. Cui, L. Ren, and W. Shi, “AC4AV: A flexible and dynamic access control framework for connected and autonomous vehicles,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1946–1958, 2021.
- J. Sun, G. Xu, T. Zhang, M. Alazab, and R. H. Deng, “A practical fog-based privacy-preserving online car-hailing service system,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 2862–2877, 2022.
- J. Sun, G. Xu, T. Zhang, X. Cheng, X. Han, and M. Tang, “Secure data sharing with flexible cross-domain authorization in autonomous vehicle systems,” IEEE Transactions on Intelligent Transportation Systems, 2022.
- Y. Bao, W. Qiu, X. Cheng, and J. Sun, “Fine-grained data sharing with enhanced privacy protection and dynamic users group service for the IoV,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–15, 2022.
- A. Zhang, X. Wang, X. Ye, and X. Xie, “Lightweight and fine-grained access control for cloud–fog-based electronic medical record sharing systems,” International Journal of Communication Systems, vol. 34, no. 13, p. e4909, 2021.
- H. Nasiraee and M. Ashouri-Talouki, “Privacy-preserving distributed data access control for CloudIoT,” IEEE Transactions on Dependable and Secure Computing, 2021.
- K. Gaj and P. Chodowiec, “Fpga and asic implementations of aes,” Cryptographic engineering, pp. 235–294, 2009.
- “Essentials of edge computing.” https://www.nxp.com/document/guide/essentials-of-edge-computing-ebook:EDGE-COMPUTING-EBOOK.
- Q. H. Cao, M. Giyyarpuram, R. Farahbakhsh, and N. Crespi, “Policy-based usage control for a trustworthy data sharing platform in smart cities,” Future Generation Computer Systems, vol. 107, pp. 998–1010, 2020.
- A. Munoz-Arcentales, S. López-Pernas, A. Pozo, Á. Alonso, J. Salvachúa, and G. Huecas, “Data usage and access control in industrial data spaces: Implementation using fiware,” Sustainability, vol. 12, no. 9, p. 3885, 2020.
- F. Kelbert and A. Pretschner, “Data usage control for distributed systems,” ACM Transactions on Privacy and Security, vol. 21, no. 3, pp. 1–32, 2018.
- F. Cirillo, B. Cheng, R. Porcellana, M. Russo, G. Solmaz, H. Sakamoto, and S. P. Romano, “IntentKeeper: Intent-oriented data usage control for federated data analytics,” in 2020 IEEE 45th Conference on Local Computer Networks. IEEE, 2020, pp. 204–215.
- T. Xue, Y. Wen, B. Luo, G. Li, Y. Li, B. Zhang, Y. Zheng, Y. Hu, and D. Meng, “SparkAC: Fine-grained access control in Spark for secure data sharing and analytics,” IEEE Transactions on Dependable and Secure Computing, 2022.
- C. Arora, S. Z. R. Rizvi, and P. W. Fong, “Higher-order relationship-based access control: A temporal instantiation with IoT applications,” in Proceedings of the 27th ACM on Symposium on Access Control Models and Technologies, 2022, pp. 223–234.
- B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and A. Kitazawa, “FogFlow: Easy programming of IoT services over cloud and edges for smart cities,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 696–707, 2017.
- “ODRL Information Model 2.2,” https://www.w3.org/TR/odrl-model/.
- J.-W. Byun and N. Li, “Purpose based access control for privacy protection in relational database systems,” The VLDB Journal, vol. 17, no. 4, pp. 603–619, 2008.
- H. Liu, D. Han, and D. Li, “Fabric-IoT: A blockchain-based access control system in IoT,” IEEE Access, vol. 8, pp. 18 207–18 218, 2020.
- C. Mazzocca, N. Romandini, M. Colajanni, and R. Montanari, “FRAMH: A federated learning risk-based authorization middleware for healthcare,” IEEE Transactions on Computational Social Systems, 2022.
- T. Sylla, L. Mendiboure, M. A. Chalouf, and F. Krief, “Blockchain-based context-aware authorization management as a service in IoT,” Sensors, vol. 21, no. 22, p. 7656, 2021.
- Y. Liu, Q. Lu, S. Chen, Q. Qu, H. O’Connor, K.-K. R. Choo, and H. Zhang, “Capability-based IoT access control using blockchain,” Digital Communications and Networks, vol. 7, no. 4, pp. 463–469, 2021.
- R. Xu, Y. Chen, E. Blasch, and G. Chen, “Exploration of blockchain-enabled decentralized capability-based access control strategy for space situation awareness,” Optical Engineering, vol. 58, no. 4, pp. 041 609–041 609, 2019.
- ——, “BlendCAC: A smart contract enabled decentralized capability-based access control mechanism for the IoT,” Computers, vol. 7, no. 3, p. 39, 2018.
- M. A. Bouras, B. Xia, A. O. Abuassba, H. Ning, and Q. Lu, “IoT-CCAC: a blockchain-based consortium capability access control approach for IoT,” PeerJ Computer Science, vol. 7, p. e455, 2021.
- Y. Nakamura, Y. Zhang, M. Sasabe, and S. Kasahara, “Exploiting smart contracts for capability-based access control in the Internet of Things,” Sensors, vol. 20, no. 6, p. 1793, 2020.
- Y. Chen, L. Tao, B. Liang, L. Sun, Y. Li, B. Xing, and L. Chen, “Capability-& Blockchain-based fine-grained and flexible access control model,” IEEE Network, 2023.
- J. Zhang, L. Yuan, and S. Xu, “A lightweight blockchain-based access control scheme for integrated edge computing in the Internet of Things,” arXiv preprint arXiv:2111.06544, 2021.
- G. Yu, X. Zha, X. Wang, W. Ni, K. Yu, P. Yu, J. A. Zhang, R. P. Liu, and Y. J. Guo, “Enabling attribute revocation for fine-grained access control in blockchain-IoT systems,” IEEE Transactions on Engineering Management, vol. 67, no. 4, pp. 1213–1230, 2020.
- D. Han, Y. Zhu, D. Li, W. Liang, A. Souri, and K.-C. Li, “A blockchain-based auditable access control system for private data in service-centric IoT environments,” IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3530–3540, 2021.
- W. Yang, Z. Guan, L. Wu, X. Du, and M. Guizani, “Secure data access control with fair accountability in smart grid data sharing: An edge blockchain approach,” IEEE Internet of Things Journal, vol. 8, no. 10, pp. 8632–8643, 2020.
- T. A. Syed, M. S. Siddique, A. Nadeem, A. Alzahrani, S. Jan, and M. A. K. Khattak, “A novel blockchain-based framework for vehicle life cycle tracking: An end-to-end solution,” IEEE Access, vol. 8, pp. 111 042–111 063, 2020.
- G. Wu, S. Wang, Z. Ning, and J. L. records, “Blockchain-enabled privacy-preserving access control for data publishing and sharing in the Internet of Medical Things,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8091–8104, June 2022.
- M. Zhaofeng, W. Lingyun, W. Xiaochang, W. Zhen, and Z. Weizhe, “Blockchain-enabled decentralized trust management and secure usage control of IoT big data,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4000–4015, 2019.
- Y. Xiao, N. Zhang, J. Li, W. Lou, and Y. T. Hou, “PrivacyGuard: Enforcing private data usage control with blockchain and attested off-chain contract execution,” in Computer Security–ESORICS 2020: 25th European Symposium on Research in Computer Security, ESORICS 2020, Guildford, UK, September 14–18, 2020, Proceedings, Part II 25. Springer, 2020, pp. 610–629.
- X. Zhang, X. Li, Y. Miao, X. Luo, Y. Wang, S. Ma, and J. Weng, “A data trading scheme with efficient data usage control for industrial IoT,” IEEE Transactions on Industrial Informatics, vol. 18, no. 7, pp. 4456–4465, 2021.
- T. Pol and A. Badescu, “Preserving the privacy of data in autonomous cars IoT using Intel SGX,” 19th SC@ RUG 2021-2022, p. 27.
- Y. Gao, H. Lin, Y. Chen, and Y. Liu, “Blockchain and SGX-enabled edge-computing-empowered secure IoMT data analysis,” IEEE Internet of Things Journal, vol. 8, no. 21, pp. 15 785–15 795, 2021.
- J. Han, Y. Zhang, J. Liu, Z. Li, M. Xian, H. Wang, F. Mao, and Y. Chen, “A blockchain-based and SGX-enabled access control framework for IoT,” Electronics, vol. 11, no. 17, p. 2710, 2022.
- I. B. M. Corporation, “Why new off-chain storage is required for blockchains,” 2018.
- Y. Zhu, X. Wu, and Z. Hu, “Fine grained access control based on smart contract for edge computing,” Electronics, vol. 11, no. 1, p. 167, 2022.
- A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, “FairAccess: a new blockchain-based access control framework for the Internet of Things,” Security and Communication Networks, vol. 9, no. 18, pp. 5943–5964, 2016.
- A. Ouaddah and B. Bellaj, “FairAccess2.0: a smart contract-based authorisation framework for enabling granular access control in IoT,” International Journal of Information and Computer Security, vol. 15, no. 1, pp. 18–48, 2021.
- O. Novo, “Blockchain meets IoT: An architecture for scalable access management in IoT,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1184–1195, 2018.
- Y. Zhang et al., “Smart contract-based access control for the Internet of Things,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1594–1605, 2018.
- M. N. Nobi, “Towards machine learning based access control,” Ph.D. dissertation, The University of Texas at San Antonio, 2022.
- M. Narouei, H. Takabi, and R. Nielsen, “Automatic extraction of access control policies from natural language documents,” IEEE Transactions on Dependable and Secure Computing, vol. 17, no. 3, pp. 506–517, 2018.
- M. Ait El Hadj, Y. Benkaouz, B. Freisleben, and M. Erradi, “ABAC rule reduction via similarity computation,” in Networked Systems: 5th International Conference, NETYS 2017, Marrakech, Morocco, May 17-19, 2017, Proceedings 5. Springer, 2017, pp. 86–100.
- X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated extraction of security policies from natural-language software documents,” in Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, 2012, pp. 1–11.
- A. Hosseinzadeh, A. Eitel, and C. Jung, “A systematic approach toward extracting technically enforceable policies from data usage control requirements.” in International Conference on Information Systems Security and Privacy, 2020, pp. 397–405.
- M. N. Nobi, M. Gupta, L. Praharaj, M. Abdelsalam, R. Krishnan, and R. Sandhu, “Machine learning in access control: A taxonomy and survey,” arXiv preprint arXiv:2207.01739, 2022.
- J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.
- A. Abu Jabal, E. Bertino, J. Lobo, D. Verma, S. Calo, and A. Russo, “Flap-a federated learning framework for attribute-based access control policies,” in Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy, 2023, pp. 263–272.
- T. Yu, T. Li, Y. Sun, S. Nanda, V. Smith, V. Sekar, and S. Seshan, “Learning context-aware policies from multiple smart homes via federated multi-task learning,” in 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation. IEEE, 2020, pp. 104–115.
- M. N. Nobi, R. Krishnan, and R. Sandhu, “Adversarial attacks in machine learning based access control,” 2022.
- S. Pal and Z. Jadidi, “Protocol-based and hybrid access control for the IoT: approaches and research opportunities,” Sensors, vol. 21, no. 20, p. 6832, 2021.
- R. Saha, G. Kumar, M. Conti, T. Devgun, T.-h. Kim, M. Alazab, and R. Thomas, “DHACS: Smart contract-based decentralized hybrid access control for Industrial Internet-of-Things,” IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3452–3461, 2021.
- R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “iFogSim2: An extended ifogsim simulator for mobility, clustering, and microservice management in edge and fog computing environments,” Journal of Systems and Software, vol. 190, p. 111351, 2022.
- D. Nandan Jha, K. Alwasel, A. Alshoshan, X. Huang, R. K. Naha, S. K. Battula, S. Garg, D. Puthal, P. James, A. Y. Zomaya et al., “IoTSim-Edge: A simulation framework for modeling the behavior of IoT and edge computing environments,” arXiv e-prints, pp. arXiv–1910, 2019.
- C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An environment for performance evaluation of edge computing systems,” Transactions on Emerging Telecommunications Technologies, vol. 29, no. 11, p. e3493, 2018.
- Tao Xue (26 papers)
- Ying Zhang (389 papers)
- Yanbin Wang (26 papers)
- Wenbo Wang (98 papers)
- Shuailou Li (1 paper)
- Haibin Zhang (36 papers)