Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 TPS
Gemini 2.5 Pro 55 TPS Pro
GPT-5 Medium 40 TPS
GPT-5 High 40 TPS Pro
GPT-4o 94 TPS
GPT OSS 120B 477 TPS Pro
Kimi K2 231 TPS Pro
2000 character limit reached

Qsyn: A Developer-Friendly Quantum Circuit Synthesis Framework for NISQ Era and Beyond (2405.07197v3)

Published 12 May 2024 in quant-ph

Abstract: In this paper, we introduce a new quantum circuit synthesis (QCS) framework, Qsyn, for developers to research, develop, test, experiment, and then contribute their QCS algorithms and tools to the framework. Our framework is more developer-friendly than other modern QCS frameworks in three aspects: (1) We design a rich command-line interface so that developers can easily design various testing scenarios and flexibly conduct experiments on their algorithms. (2) We offer detailed access to many data representations on different abstract levels of quantum circuits so that developers can optimize their algorithms to the extreme. (3) We define a rigid developing flow and environment so that developers can ensure their development qualities with the best modern software engineering practices. We illustrate the friendliness of our framework with a showcase of developing a T-Count Optimization algorithm and demonstrate our performance superiority with fair comparisons to other modern QCS frameworks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli, F. Mozafari, S.-Y. Lee, A. T. Calvino, D. S. Marakkalage, and G. De Micheli, “The EPFL logic synthesis libraries,” June 2018.
  2. E. T. Campbell and J. O’Gorman, “An efficient magic state approach to small angle rotations,” Quantum Science and Technology, vol. 1, p. 015007, Dec. 2016.
  3. N. de Beaudrap, X. Bian, and Q. Wang, “Fast and effective techniques for T-count reduction via spider nest identities,” Apr. 2020.
  4. R. Wille and L. Burgholzer, “MQT QMAP: Efficient quantum circuit mapping,” in Proc. International Symposium on Physical Design (ISPD), pp. 198–204, Mar. 2023.
  5. N. J. Ross and P. Selinger, “Optimal ancilla-free Clifford+T approximation of z-rotations,” Quantum Information & Computation, vol. 16, pp. 901–953, Sept. 2016.
  6. G. Meuli, M. Soeken, M. Roetteler, N. Bjorner, and G. D. Micheli, “Reversible pebbling game for quantum memory management,” in Proc. Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 288–291, Mar. 2019.
  7. G. Meuli, M. Soeken, M. Roetteler, and G. De Micheli, “ROS: Resource-constrained oracle synthesis for quantum computers,” in Proc. Electronic Proceedings in Theoretical Computer Science (EPTCS), vol. 318, pp. 119–130, May 2020.
  8. M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: A toolkit for reversible circuit design,” Journal of Multiple-Valued Logic and Soft Computing, vol. 18, no. 1, pp. 55–65, 2012.
  9. M. Amy, D. Maslov, and M. Mosca, “Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33, pp. 1476–1489, Oct. 2014.
  10. L. E. Heyfron and E. T. Campbell, “An efficient quantum compiler that reduces T count,” Quantum Science and Technology, vol. 4, p. 015004, Sept. 2018.
  11. S. Bravyi, R. Shaydulin, S. Hu, and D. Maslov, “Clifford Circuit Optimization with Templates and Symbolic Pauli Gates,” Quantum, vol. 5, p. 580, Nov. 2021.
  12. A. Kissinger and J. Van De Wetering, “Reducing the number of non-Clifford gates in quantum circuits,” Physical Review A, vol. 102, p. 022406, Aug. 2020.
  13. G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, F. J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F. Chen, and others, “Qiskit: An open-source framework for quantum computing,” 2019.
  14. IBM, “IBM quantum,” 2021.
  15. Microsoft, “Q# language specification,” 2020.
  16. R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical quantum instruction set architecture,” Feb. 2017.
  17. Cirq Developers, “Cirq,” Dec. 2023.
  18. N. Heurtel, A. Fyrillas, G. D. Gliniasty, R. Le Bihan, S. Malherbe, M. Pailhas, E. Bertasi, B. Bourdoncle, P.-E. Emeriau, R. Mezher, L. Music, N. Belabas, B. Valiron, P. Senellart, S. Mansfield, and J. Senellart, “Perceval: A software platform for discrete variable photonic quantum computing,” Quantum, vol. 7, p. 931, Feb. 2023.
  19. N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, and C. Weedbrook, “Strawberry Fields: A software platform for photonic quantum computing,” Quantum, vol. 3, p. 129, Mar. 2019.
  20. T. R. Bromley, J. M. Arrazola, S. Jahangiri, J. Izaac, N. Quesada, A. D. Gran, M. Schuld, J. Swinarton, Z. Zabaneh, and N. Killoran, “Applications of near-term photonic quantum computers: software and algorithms,” Quantum Science and Technology, vol. 5, p. 034010, May 2020.
  21. S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan, “t|ket⟩: a retargetable compiler for NISQ devices,” Quantum Science and Technology, vol. 6, p. 014003, Jan. 2021.
  22. A. Cowtan, S. Dilkes, R. Duncan, W. Simmons, and S. Sivarajah, “Phase gadget synthesis for shallow circuits,” in Proc. Electronic Proceedings in Theoretical Computer Science (EPTCS), vol. 318, pp. 213–228, May 2020.
  23. M. Amy and V. Gheorghiu, “staq — A full-stack quantum processing toolkit,” Quantum Science and Technology, vol. 5, p. 034016, June 2020.
  24. A. Kissinger and J. Van De Wetering, “PyZX: Large scale automated diagrammatic reasoning,” in Proc. Electronic Proceedings in Theoretical Computer Science (EPTCS), vol. 318, pp. 229–241, May 2020.
  25. A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron, “Quipper: a scalable quantum programming language,” ACM SIGPLAN Notices, vol. 48, pp. 333–342, June 2013.
  26. A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi, “ScaffCC: a framework for compilation and analysis of quantum computing programs,” in Proceedings of the 11th ACM Conference on Computing Frontiers, pp. 1–10, ACM, May 2014.
  27. B. Bichsel, M. Baader, T. Gehr, and M. Vechev, “Silq: a high-level quantum language with safe uncomputation and intuitive semantics,” in Proc. ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI), pp. 286–300, ACM, June 2020.
  28. R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verification tool,” in Computer Aided Verification, vol. 6174, pp. 24–40, 2010.
  29. C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free Verilog synthesis suite,” in Proc. Austrian Workshop on Microelectronics (Austrochip), vol. 97, 2013.
  30. K. Staudacher, T. Guggemos, S. Grundner-Culemann, and W. Gehrke, “Reducing 2-QuBit gate count for ZX-calculus based quantum circuit optimization,” in Proc. Electronic Proceedings in Theoretical Computer Science (EPTCS), vol. 394, pp. 29–45, Nov. 2023.
  31. F. Zhang and J. Chen, “Optimizing T gates in Clifford+T circuit as π/4𝜋4\pi/4italic_π / 4 rotations around Paulis,” Mar. 2019.
  32. V. Vandaele, S. Martiel, S. Perdrix, and C. Vuillot, “Optimal hadamard gate count for Clifford+ T synthesis of Pauli rotations sequences,” ACM Transactions on Quantum Computing, vol. 5, pp. 1–29, Mar. 2024.
  33. M. Xu, Z. Li, O. Padon, S. Lin, J. Pointing, A. Hirth, H. Ma, J. Palsberg, A. Aiken, U. A. Acar, and Z. Jia, “Quartz: superoptimization of Quantum circuits,” in Proc. ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI), pp. 625–640, June 2022.
  34. D. Litinski, “Magic state distillation: Not as costly as you think,” Quantum, vol. 3, p. 205, Dec. 2019.
  35. N. Sundaresan, I. Lauer, E. Pritchett, E. Magesan, P. Jurcevic, and J. M. Gambetta, “Reducing unitary and spectator errors in cross resonance with optimized rotary echoes,” PRX Quantum, vol. 1, p. 020318, Dec. 2020.
  36. C. M. Dawson and M. A. Nielsen, “The Solovay-Kitaev algorithm,” Quantum Information & Computation, vol. 6, pp. 81–95, Jan. 2006.
  37. D. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, “Surface code quantum computing by lattice surgery,” New Journal of Physics, vol. 14, p. 123011, Dec. 2012.
  38. A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Physical Review A, vol. 86, p. 032324, Sept. 2012.
  39. W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi, “CutQC: Using small quantum computers for large quantum circuit evaluations,” in Proc. ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 473–486, Apr. 2021.
  40. H. Zhang, K. Yin, A. Wu, H. Shapourian, A. Shabani, and Y. Ding, “MECH: Multi-entry communication highway for superconducting wuantum chiplets,” 2023.
  41. Y. Mao, Y. Liu, and Y. Yang, “Qubit allocation for distributed quantum computing,” in Proc. IEEE Conference on Computer Communications (INFOCOM), May 2023.
  42. M. G. Davis, J. Chung, D. Englund, and R. Kettimuthu, “Towards distributed quantum computing by qubit and gate graph partitioning techniques,” in Proc. IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 161–167, Sept. 2023.
  43. P. Escofet, A. Ovide, M. Bandic, L. Prielinger, H. Van Someren, S. Feld, E. Alarcón, S. Abadal, and C. G. Almudéver, “Revisiting the mapping of quantum circuits: Entering the multi-core era,” ACM Transactions on Quantum Computing, p. 3655029, Mar. 2024.
  44. A. Wu, H. Zhang, G. Li, A. Shabani, Y. Xie, and Y. Ding, “AutoComm: A framework for enabling efficient communication in distributed quantum programs,” in Proc. IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1027–1041, Oct. 2022.
  45. D. Ferrari, S. Carretta, and M. Amoretti, “A modular quantum compilation framework for distributed quantum computing,” IEEE Transactions on Quantum Engineering, vol. 4, pp. 1–13, 2023.
  46. Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoffmann, and F. T. Chong, “Optimized compilation of aggregated instructions for realistic quantum computers,” in Proc. ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 1031–1044, Apr. 2019.
  47. P. Gokhale, A. JavadiAbhari, N. Earnest, Y. Shi, and F. T. Chong, “Optimized quantum compilation for near-term algorithms with OpenPulse,” in Proc. IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 186–200, Oct. 2020.
  48. R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, “MIS: A multiple-level logic optimization system,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 6, pp. 1062–1081, Nov. 1987.
  49. E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A system for sequential circuit synthesis,” Tech. Rep. UCB/ERL M92/41, EECS Department, University of California, Berkeley, May 1992.
  50. R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S. T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Staple, G. Swamy, and T. Villa, “VIS: A system for verification and synthesis,” in Computer Aided Verification, vol. 1102, pp. 428–432, 1996.
  51. A. JavadiAbhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati, C.-F. Chiang, S. Vanderwilt, J. Black, F. Chong, and others, “Scaffold: Quantum programming language,” tech. rep., Dept of Computer Science, Princeton University, July 2012.
  52. A. M. Krol, A. Sarkar, I. Ashraf, Z. Al-Ars, and K. Bertels, “Efficient decomposition of unitary matrices in quantum circuit compilers,” Applied Sciences, vol. 12, p. 759, Jan. 2022.
  53. M. Nakahara and T. Ohmi, Quantum computing: from linear algebra to physical realizations. CRC press, 2008.
  54. V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit controlled-NOT-based circuits,” Physical Review A, vol. 69, p. 062321, June 2004.
  55. C.-Y. Cheng, C.-Y. Yang, Y.-H. Kuo, R.-C. Wang, H.-C. Cheng, and C.-Y. R. Huang, “Robust qubit mapping algorithm via double-source optimal routing on large quantum circuits,” Apr. 2024.
  56. C.-H. Lu, “Dynamic quantum circuit optimization by ZX-calculus using Qsyn,” July 2023.
  57. G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for NISQ-era quantum devices,” in Proc. ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 1001–1014, 2019.
  58. C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen, and E. Z. Zhang, “Time-optimal qubit mapping,” in Proc. ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 360–374, 2021.
  59. H. Deng, Y. Zhang, and Q. Li, “CODAR: A contextual duration-aware qubit mapping for various NISQ devices,” in Proc. ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2020.
  60. R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib: An online resource for reversible functions and reversible circuits,” in Proc. International Symposium on Multiple Valued Logic (ISMVL), pp. 220–225, 2008.
  61. A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, “QASMBench: A low-level quantum benchmark suite for NISQ evaluation and simulation,” ACM Transactions on Quantum Computing, vol. 4, pp. 1–26, June 2023.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

  • The paper introduces Qsyn, a novel framework that significantly enhances quantum circuit synthesis by reducing T-count and circuit depth in NISQ-era devices.
  • It features a flexible CLI, diverse data representations, and a unified development environment that streamlines algorithm prototyping and quality assurance.
  • Evaluation against established frameworks demonstrates Qsyn's competitive mapping capabilities and robust performance for both current and future quantum technologies.

Qsyn: An Advanced Framework for Quantum Circuit Synthesis in the NISQ Era and Beyond

The paper presents Qsyn, a transformative framework for quantum circuit synthesis (QCS) that aims to facilitate the development and optimization of quantum circuits, particularly targeting the Noisy Intermediate-Scale Quantum (NISQ) era and future quantum devices. Qsyn stands out in the quantum computing landscape due to its developer-centric approach, addressing gaps in experiment conduciveness and algorithm development that have persisted in existing QCS frameworks.

Framework Capabilities and Design

The Qsyn framework is designed with a strong emphasis on developer-friendliness, incorporating several noteworthy features:

  1. Command-Line Interface (CLI): Qsyn offers a flexible and comprehensive CLI that enables developers to implement and test new quantum circuit synthesis algorithms efficiently. The CLI is designed for ease of use and extensibility, allowing researchers to create custom commands and leverage existing ones to build complex synthesis routines.
  2. Extensive Data Representation: Qsyn supports diverse data representations required for QCS, including quantum circuit, ZX-diagram, and tableau representations. This allows developers to interact directly with low-level data structures, facilitating fine-tuning and optimization of synthesis algorithms.
  3. Unified Development Environment: Ensuring a standardized approach, Qsyn provides robust quality-assurance methodologies such as regression tests and continuous integration. This feature guarantees the reliability of new features and maintains a consistent development process.
  4. Algorithm Implementation Support: By encompassing detailed access to various data representations and offering standardized tools and languages, Qsyn enables developers to prototype and evaluate QCS algorithms effectively, expediting their iterative design process.

Evaluation and Performance

The paper evaluates Qsyn's synthesis routines against existing QCS frameworks like Qiskit, PyZX, and t. Qsyn demonstrates competitive performance, particularly in scenarios that emphasize reducing T-count and depth of quantum circuits. The optimization strategies in Qsyn achieve notable efficiency, often surpassing the synthesis results produced by other frameworks in terms of both resource usage and resultant circuit statistics.

Moreover, Qsyn's device mapping capabilities, evaluated against frameworks such as QMAP and SABRE, show its potential to handle large-scale qubit mapping tasks with reduced depth overheads. The combined strengths of its synthesis and mapping methodologies present Qsyn as an effective tool for navigating the challenges of imminent quantum technologies.

Implications and Future Directions

The implications of Qsyn are significant for both practical and theoretical advancements in quantum computing. By streamlining the development and optimization processes, Qsyn can enhance the efficiency of current quantum computing tasks while providing a platform for researching future algorithmic innovations. The modular and open-source nature of Qsyn invites collaboration and continuous improvement from the broader quantum computing community, potentially serving as a foundational tool in quantum circuit synthesis.

Moving forward, expanding Qsyn's capabilities in high-level synthesis would remain crucial to fully leverage its potential in optimizing complex quantum circuits. Additionally, integration of strategies for fault-tolerant and distributed quantum computing would align with future-proof developments, enabling Qsyn to adapt to post-NISQ era requirements.

In conclusion, Qsyn represents a significant step toward a comprehensive, developer-friendly framework for quantum circuit synthesis. It addresses critical gaps in current methodologies while setting a precedent for future advancements in quantum computing software, promising to augment algorithmic research and application deployment in the rapidly evolving field of quantum technologies.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com