Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A nonlocal diffusion single population model in advective environment (2405.06878v1)

Published 11 May 2024 in math.AP and math.DS

Abstract: This paper is devoted to a nonlocal reaction-diffusion-advection model that describes the spatial dynamics of freshwater organisms in a river with a directional motion. Our goal is to investigate how the advection rate affects the dynamic behaviors of species. We first establish the well-posedness of global solutions, where the regularized problem containing a viscosity term and the re-established maximum principle play an important role. And we then show the existence/nonexistence, uniqueness, and stability of nontrivial stationary solutions by analyzing the principal eigenvalue of integro-differential operator (especially studying the monotonicity of the principal eigenvalue with respect to the advection rate), which enables us to understand the longtime behaviors of solutions and obtain the sharp criteria for persistence or extinction. Furthermore, we study the limiting behaviors of solutions with respect to the advection rate and find that the sufficiently large directional motion will cause species extinction in all situations. Lastly, the numerical simulations verify our theoretical proofs.

Summary

We haven't generated a summary for this paper yet.