Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Site-dependent Solutions of Wave Energy Converter Farms with Surrogate Models, Control Co-design, and Layout Optimization (2405.06794v1)

Published 10 May 2024 in eess.SY and cs.SY

Abstract: Design of wave energy converter farms entails multiple domains that are coupled, and thus, their concurrent representation and consideration in early-stage design optimization has the potential to offer new insights and promising solutions with improved performance. Concurrent optimization of physical attributes (e.g., plant) and the control system design is often known as control co-design or CCD. To further improve performance, the layout of the farm must be carefully optimized in order to ensure that constructive effects from hydrodynamic interactions are leveraged, while destructive effects are avoided. The variations in the joint probability distribution of waves, stemming from distinct site locations, affect the farm's performance and can potentially influence decisions regarding optimal plant selection, control strategies, and layout configurations. Therefore, this paper undertakes a concurrent exploration of control co-design and layout optimization for a farm comprising five devices, modeled as heaving cylinders in the frequency domain, situated across four distinct site locations: Alaskan Coasts, East Coast, Pacific Islands, and West Coast. The challenge of efficiently and accurately estimating hydrodynamic coefficients within the optimization loop was mitigated through the application of surrogate modeling and many-body expansion principles. Results indicate the optimized solutions exhibit variations in plant, control, and layout for each candidate site, signifying the importance of system-level design with environmental considerations from the early stages of the design process.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. D. R. Herber and J. T. Allison, “Wave energy extraction maximization in irregular ocean waves using pseudospectral methods,” in International Design Engineering Technical Conferences, Aug. 2013, doi: 10.1115/DETC2013-12600
  2. Y. Peña-Sanchez, D. García-Violini, and J. V. Ringwood, “Control co-design of power take-off parameters for wave energy systems,” IFAC-PapersOnLine, vol. 55, no. 27, pp. 311–316, 2022, doi: 10.1016/j.ifacol.2022.10.531
  3. J. V. Ringwood, S. Zhan, and N. Faedo, “Empowering wave energy with control technology: Possibilities and pitfalls,” Annu. Rev. Control, vol. 55, pp. 18–44, 2023, doi: 10.1016/j.arcontrol.2023.04.004
  4. C. Vermillion, K. Granlund, A. Mazzoleni, H. Fathy, M. Muglia, and G. Alsenas, “Final technical report: Device design and periodic motion control of an ocean kite system for hydrokinetic energy harvesting,” North Carolina State University, Raleigh, NC, USA, Tech. Rep., Feb. 2023, doi: 10.2172/1959041
  5. S. Azad and D. R. Herber, “Concurrent probabilistic control co-design and layout optimization of wave energy converter farms using surrogate modeling,” in International Design Engineering Technical Conferences, Aug. 2023, doi: 10.1115/detc2023-116896
  6. H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,” in Annual Workshop on Computational Learning Theory, Jul. 1992, pp. 287–294, doi: 10.1145/130385.130417
  7. M. Neshat, S. Mirjalili, N. Y. Sergiienko, S. Esmaeilzadeh, E. Amini, A. Heydari, and D. A. Garcia, “Layout optimisation of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: A case study from coasts of Australia,” Energy, vol. 239, p. 122463, 2022, doi: 10.1016/j.energy.2021.122463
  8. B. Borgarino, A. Babarit, and P. Ferrant, “Impact of wave interactions effects on energy absorption in large arrays of wave energy converters,” Ocean Eng., vol. 41, pp. 79–88, 2012, doi: 10.1016/j.oceaneng.2011.12.025
  9. P. Mercadé Ruiz, V. Nava, M. B. Topper, P. Ruiz Minguela, F. Ferri, and J. P. Kofoed, “Layout optimisation of wave energy converter arrays,” Energies, vol. 10, no. 9, p. 1262, 2017, doi: 10.3390/en10091262
  10. C. D. Storlazzi, J. B. Shope, L. H. Erikson, C. A. Hegermiller, and P. L. Barnard, “Future wave and wind projections for United States and United States-affiliated Pacific Islands,” U.S. Geological Survey, Reston, VA, USA, Open-File Report, 2015, doi: 10.3133/ofr20151001
  11. V. S. Neary et al., “Methodology for design and economic analysis of marine energy conversion (MEC) technologies,” Sandia National Laboratories, Albuquerque, NM, USA, Tech. Rep. SAND2014-9040, Mar. 2014.
  12. J. Zhang, A. A. Taflanidis, and J. T. Scruggs, “Surrogate modeling of hydrodynamic forces between multiple floating bodies through a hierarchical interaction decomposition,” J. Comput. Phys., vol. 408, p. 109298, 2020, doi: 10.1016/j.jcp.2020.109298
  13. S. Azad and D. R. Herber, “An overview of uncertain control co-design formulations,” J. Mech. Des., vol. 145, no. 9, pp. 1–20, 2023, doi: 10.1115/1.4062753
  14. https://github.com/AzadSaeed/WEC_FD.
  15. J. Lyu, O. Abdelkhalik, and L. Gauchia, “Optimization of dimensions and layout of an array of wave energy converters,” Ocean Eng., vol. 192, p. 106543, 2019, doi: 10.1016/j.oceaneng.2019.106543
  16. M. Han, F. Cao, H. Shi, H. Kou, H. Gong, and C. Wang, “Parametrical study on an array of point absorber wave energy converters,” Ocean Eng., vol. 272, p. 113857, 2023, doi: 10.1016/j.oceaneng.2023.113857
  17. E. Suarez, N. Diaz, and D. Suarez, “Thermochemical fragment energy method for biomolecules: Application to a collagen model peptide,” J. Chem. Theory Comput., vol. 5, no. 6, pp. 1667–1679, 2009, doi: 10.1021/ct8005002
  18. J. Jakeman, M. Eldred, and D. Xiu, “Numerical approach for quantification of epistemic uncertainty,” J. Comput. Phys., vol. 229, no. 12, pp. 4648–4663, 2010, doi: 10.1016/j.jcp.2010.03.003
  19. F. Antonio, “Wave energy utilization: A review of the technologies,” Renew. Sust. Energ. Rev., vol. 14, no. 3, pp. 899–918, 2010, doi: 10.1016/j.rser.2009.11.003
  20. C. Fitzgerald and G. Thomas, “A preliminary study on the optimal formation of an array of wave power devices,” in European Wave and Tidal Energy Conference, Sep. 2007, pp. 11–14.
Citations (2)

Summary

We haven't generated a summary for this paper yet.