Active Brownian particle under stochastic orientational resetting (2405.06769v1)
Abstract: We employ renewal processes to characterize the spatiotemporal dynamics of an active Brownian particle under stochastic orientational resetting. By computing the experimentally accessible intermediate scattering function (ISF) and reconstructing the full time-dependent distribution of the displacements, we study the interplay of rotational diffusion and resetting. The resetting process introduces a new spatiotemporal regime reflecting the directed motion of agents along the resetting direction at large length scales, which becomes apparent in an imaginary part of the ISF. We further derive analytical expressions for the low-order moments of the displacements and find that the variance displays an effective diffusive regime at long times, which decreases for increasing resetting rates. At intermediate times the dynamics are characterized by a negative skewness as well as a non-zero non-Gaussian parameter.
- W. J. Bell, in Searching Behaviour (Springer Netherlands, 1990) pp. 165–169.
- R. E. Goldstein and J.-W. van de Meent, Interface Focus 5, 20150030 (2015).
- W. Gilpin, M. S. Bull, and M. Prakash, Nature Reviews Physics 2, 74 (2020).
- G. H. Wadhams and J. P. Armitage, Nature Reviews Molecular Cell Biology 5, 1024 (2004).
- O. Pringault and F. Garcia-Pichel, Microbial Ecology 47 (2004), 10.1007/s00248-002-0107-3.
- T. G. Nolen and R. R. Hoy, Journal of Comparative Physiology A 159, 423 (1986).
- G. Pollack, in Encyclopedia of Animal Behavior (Elsevier, 2010) pp. 1–6.
- U. Lins and D. Bazylinski, in Encyclopedia of Microbiology (Elsevier, 2009) pp. 229–241.
- K. J. Painter, Journal of Theoretical Biology 481, 162 (2019).
- D.-P. Häder, Advances in Space Research 24, 843 (1999).
- D.-P. Häder and R. Hemmersbach (2017) pp. 237–266.
- O. Chepizhko and T. Franosch, Physical Review Letters 129, 228003 (2022).
- J. C. Montgomery, C. F. Baker, and A. G. Carton, Nature 389, 960 (1997).
- M. B. Miller and B. L. Bassler, Annual Review of Microbiology 55, 165 (2001).
- C. M. Waters and B. L. Bassler, Annual Review of Cell and Developmental Biology 21, 319 (2005).
- B. J. Nelson, L. Dong, and F. Arai, in Springer Handbook of Robotics (Springer Berlin Heidelberg, 2008) pp. 411–450.
- M. Safdar, S. U. Khan, and J. Jänis, Advanced Materials 30 (2018), 10.1002/adma.201703660.
- M. R. Evans, S. N. Majumdar, and G. Schehr, Journal of Physics A: Mathematical and Theoretical 53, 193001 (2020).
- M. R. Evans and S. N. Majumdar, Physical Review Letters 106, 160601 (2011).
- S. Reuveni, Physical Review Letters 116, 170601 (2016).
- S. Ray and S. Reuveni, The Journal of Chemical Physics 152, 234110 (2020).
- I. Abdoli and A. Sharma, Soft Matter 17, 1307 (2021).
- V. Kumar, O. Sadekar, and U. Basu, Physical Review E 102, 052129 (2020).
- B. ten Hagen, S. van Teeffelen, and H. Löwen, Journal of Physics: Condensed Matter 23, 194119 (2011).
- D. Cox, Renewal Theory (1962).
- W. Feller, An Introduction to Probability Theory and Its Applications, 2nd ed., Vol. 2 (1991) p. 363.
- L. Angelani, EPL (Europhysics Letters) 102, 20004 (2013).
- V. Zaburdaev, S. Denisov, and J. Klafter, Reviews of Modern Physics 87, 483 (2015).
- M. E. Cates and J. Tailleur, EPL (Europhysics Letters) 101, 20010 (2013).
- J.-P. Hansen and I. McDonald, Theory of Simple Liquids, 4th ed. (Academic Press, 2013).
- F. Höfling and T. Franosch, Reports on Progress in Physics 76, 046602 (2013).
- G. Lattanzi, T. Munk, and E. Frey, Physical Review E 69, 021801 (2004).
- C. Kurzthaler and T. Franosch, Soft Matter 14, 2682 (2018).
- R. Cerbino and V. Trappe, Physical Review Letters 100, 188102 (2008).
- J. A. Richards, V. A. Martinez, and J. Arlt, Soft Matter 17, 3945 (2021).
- J. Fuchs, S. Goldt, and U. Seifert, EPL (Europhysics Letters) 113, 60009 (2016).
- F. Mori, K. S. Olsen, and S. Krishnamurthy, Physical Review Research 5, 023103 (2023).
- Z. Peng and J. F. Brady, Physical Review Fluids 5, 073102 (2020).
- F. D. Trapani, T. Franosch, and M. Caraglio, Physical Review E 107, 064123 (2023).
- A. Pal, I. Eliazar, and S. Reuveni, Physical Review Letters 122, 020602 (2019).
- A. Chechkin and I. M. Sokolov, Physical Review Letters 121, 050601 (2018).
- B. D. Bruyne, J. Randon-Furling, and S. Redner, Physical Review Letters 125, 050602 (2020).
- P. Chełminiak, Journal of Physics A: Mathematical and Theoretical 55, 384004 (2022).
- DLMF, “NIST Digital Library of Mathematical Functions,” https://dlmf.nist.gov/, Release 1.2.0 of 2024-03-15, f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
- B. ten Hagen, S. van Teeffelen, and H. Löwen, Condensed Matter Physics 12, 725 (2009), arxiv:0906.3418 [cond-mat] .
- S. Danisch and J. Krumbiegel, Journal of Open Source Software 6, 3349 (2021).