Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Adiabatic radial perturbations of relativistic stars: analytic solutions to an old problem (2405.06740v1)

Published 10 May 2024 in gr-qc and astro-ph.SR

Abstract: We present a new system of equations that fully characterizes adiabatic, radial perturbations of perfect fluid stars within the theory of general relativity. The properties of the system are discussed, and, provided that the equilibrium spacetime verifies some general regularity conditions, analytical solutions for the perturbation variables are found. As illustrative examples, the results are applied to study perturbations of selected classical exact spacetimes, and the first oscillation eigenfrequencies are computed. Exploiting the new formalism, we derive an upper bound for the maximum compactness of stable, perfect fluid stars, which is equation-of-state-agnostic and significantly smaller than the Buchdahl bound.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. S. Chandrasekhar, “Dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity”, Phys. Rev. Lett. 12, 114 (1964); Erratum: Phys. Rev. Lett. 12, 437 (1964).
  2. S. Chandrasekhar, “The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity”, Astrophysical Journal 140, 417 (1964); Erratum: Astrophysical Journal 140, 1342 (1964).
  3. J. M. Bardeen, K. S. Thorne and D. W. Meltzer, “A Catalogue of Methods for Studying the Normal Modes of Radial Pulsation of General-Relativistic Stellar Models”, Astrophysical Journal 145, 505 (1966).
  4. G. Chanmugam, “Radial oscillations of zero-temperature white dwarfs and neutron stars below nuclear densities”, Astrophysical Journal 217, 799 (1977).
  5. H. M. Väth and G. Chanmugam, “Radial oscillations of neutron stars and strange stars”, Astron. Astrophys. 260, 250 (1992).
  6. D. Gondek, P. Haensel, and J. L. Zdunik, “Radial pulsations and stability of protoneutron stars”, Astron. Astrophys. 325, 217 (1997).
  7. D. Gondek and J. L. Zdunik, “Avoided crossings in radial pulsations of neutron and strange stars”, Astron. Astrophys. 344, 117 (1999).
  8. K. D. Kokkotas and J. Ruoff, “Radial oscillations of relativistic stars”, Astron. Astrophys. 366, 565 (2001).
  9. P. Luz and S. Carloni, “Gauge invariant perturbations of static spatially compact LRS II spacetimes”, arXiv:2405.05321 [gr-qc].
  10. C. A. Clarkson and R. K. Barrett, “Covariant perturbations of Schwarzschild black holes”, Class. Quantum Grav. 20, 3855 (2003).
  11. C. A. Clarkson, “A covariant approach for perturbations of rotationally symmetric spacetimes”, Phys. Rev. D 76, 104034 (2007).
  12. S. Carloni and D. Vernieri, “Covariant Tolman-Oppenheimer-Volkoff equations. I. The isotropic case”, Phys. Rev. D 97, 124056 (2018).
  13. S. Carloni and D. Vernieri, “Covariant Tolman-Oppenheimer-Volkoff equations. II. The anisotropic case”, Phys. Rev. D 97, 124057 (2018).
  14. P. Luz and S. Carloni, “Static compact objects in Einstein-Cartan theory”, Phys. Rev. D 100, 084037 (2019).
  15. R. Törnkvist and M. Bradley, “General perfect fluid perturbations of homogeneous and orthogonal locally rotationally symmetric class II cosmologies”, Phys. Rev. D 100, 124043 (2019).
  16. N. F. Naidu, S. Carloni and P. Dunsby, “Two-fluid stellar objects in general relativity: The covariant formulation”, Phys. Rev. D 104, 044014 (2021).
  17. N. F. Naidu, S. Carloni and P. Dunsby, “Anisotropic two-fluid stellar objects in general relativity”, Phys. Rev. D 106, 124023 (2022).
  18. J. L. Rosa and S. Carloni, “Junction conditions for general LRS spacetimes in the 1+1+21121+1+21 + 1 + 2 covariant formalism”, arXiv:2303.12457 [gr-qc].
  19. M. S. R. Delgaty and K. Lake, “Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations”, Comput. Phys. Commun. 115, 395 (1998).
  20. J. M. Stewart and M. Walker, “Perturbations of Space-Times in General Relativity”, Proc. R. Soc. Lond. A 341, 49 (1974).
  21. D. W. Meltzer and K. S. Thorne, “Normal Modes of Radial Pulsation of Stars at the End Point of Thermonuclear Evolution”, Astrophysical Journal 145, 514 (1966).
  22. A. D. D. Masa, J. P. S. Lemos and V. T. Zanchin, “Stability of electrically charged stars, regular black holes, quasiblack holes, and quasinonblack holes”, Phys. Rev. D 107, 064053 (2023).
  23. J. M. Lattimer and M. Prakash, “Neutron Star Observations: Prognosis for Equation of State Constraints,” Phys. Rept. 442, 109 (2007).
  24. A. Urbano and H. Veermäe, “On gravitational echoes from ultracompact exotic stars,” JCAP 04, 011 (2019).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)