Region of Attraction Estimation for Free-Floating Systems under Time-Varying LQR Control (2405.06726v1)
Abstract: Future Active Debris Removal (ADR) and On Orbit Servicing (OOS) missions demand for elaborate closed loop controllers. Feasible control architectures should take into consideration the inherent coupling of the free floating dynamics and the kinematics of the system. Recently, Time-Varying Linear Quadratic Regulators (TVLQR) have been used to stabilize underactuated systems that exhibit a similar kinodynamic coupling. Furthermore, this control approach integrates synergistically with Lyapunov based region of attraction (ROA) estimation, which, in the context of ADR and OOS, allows for reasoning about composability of different sub-maneuvers. In this paper, TVLQR was used to stabilize an ADR detumbling maneuver in simulation. Moreover, the ROA of the closed loop dynamics was estimated using a probabilistic method. In order to demonstrate the real-world applicability for free floating robots, further experiments were conducted onboard a free floating testbed.
- Nola Taylor Redd. Bringing satellites back from the dead: Mission extension vehicles give defunct spacecraft a new lease on life - [News]. IEEE Spectrum, 57(8):6–7, 2020. ISSN: 0018-9235. DOI: 10.1109/MSPEC.2020.9150540.
- Mission Architecture Using the SpaceX Starship Vehicle to Enable a Sustained Human Presence on Mars. New Space, 10(3):259–273, 2022. ISSN: 2168-0256. DOI: 10.1089/space.2020.0058.
- Science on the lunar surface facilitated by low latency telerobotics from a Lunar Orbital Platform - Gateway. Acta Astronautica, 154:195–203, 2019. ISSN: 00945765. DOI: 10.1016/j.actaastro.2018.04.031.
- Orbital debris removal using micropatterned dry adhesives: Review and recent advances. Progress in Aerospace Sciences, 134:100850, 2022. ISSN: 03760421. DOI: 10.1016/j.paerosci.2022.100850.
- Active Debris Removal for Mega Constellations: CubeSat Possible? In 9th international workshop on satellite constellations and formation flying, Boulder, Colorado, USA, 2017.
- Yangsheng Xu and Takeo Kanade, editors. Space Robotics: Dynamics and Control, volume 188 of The Kluwer International Series in Engineering and Computer Science. Springer US, Boston, MA, 1993. ISBN: 978-1-4613-6595-2 978-1-4615-3588-1. DOI: 10.1007/978-1-4615-3588-1.
- A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 68:1–26, 2014. ISSN: 03760421. DOI: 10.1016/j.paerosci.2014.03.002.
- A convex-programming-based guidance algorithm to capture a tumbling object on orbit using a spacecraft equipped with a robotic manipulator. The International Journal of Robotics Research, 38(1):40–72, Jan. 2019. ISSN: 0278-3649. DOI: 10.1177/0278364918804660.
- Control System for Free-Floating Space Manipulator Based on Nonlinear Model Predictive Control (NMPC). Journal of Intelligent & Robotic Systems, 85(3-4):491–509, Mar. 2017. ISSN: 0921-0296, 1573-0409. DOI: 10.1007/s10846-016-0396-2.
- Combining Parameter Identification and Trajectory Optimization: Real-time Planning for Information Gain. In arXiv. arXiv, June 2019.
- Russ Tedrake. Underactuated Robotics. 2022.
- P. Reist and R. Tedrake. Simulation-based LQR-trees with input and state constraints. In 2010 IEEE International Conference on Robotics and Automation, pages 5504–5510, May 2010. DOI: 10.1109/ROBOT.2010.5509893.
- Feedback-motion-planning with simulation-based LQR-trees. The International Journal of Robotics Research, 35(11):1393–1416, Sept. 2016. ISSN: 0278-3649, 1741-3176. DOI: 10.1177/0278364916647192.
- Robust post-stall perching with a simple fixed-wing glider using LQR-Trees. Bioinspiration & Biomimetics, 9(2):025013, May 2014. ISSN: 1748-3182, 1748-3190. DOI: 10.1088/1748-3182/9/2/025013.
- Funnel libraries for real-time robust feedback motion planning. The International Journal of Robotics Research, 36(8):947–982, July 2017. ISSN: 0278-3649. DOI: 10.1177/0278364917712421.
- LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification. The International Journal of Robotics Research, 29(8):1038–1052, July 2010. ISSN: 0278-3649, 1741-3176. DOI: 10.1177/0278364910369189.
- Invariant Funnels around Trajectories using Sum-of-Squares Programming. IFAC Proceedings Volumes, 44(1):9218–9223, Jan. 2011. ISSN: 1474-6670. DOI: 10.3182/20110828-6-IT-1002.03098.
- Sequential Composition of Dynamically Dexterous Robot Behaviors. The International Journal of Robotics Research, 18(6):534–555, June 1999. ISSN: 0278-3649, 1741-3176. DOI: 10.1177/02783649922066385.
- A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 68:1–26, July 2014. ISSN: 03760421. DOI: 10.1016/j.paerosci.2014.03.002.
- The ELISSA Laboratory: Free-Floating Satellites for Space-Related Research. In 67. Deutscher Luft- und Raumfahrtkongress, Bonn, Germany, 2018. Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V.
- Concept and Feasibility Evaluation of Distributed Sensor-Based Measurement Systems Using Formation Flying Multicopters. Atmosphere, 12(7):874, 2021. DOI: 10.3390/atmos12070874.
- Rick E Cory. Supermaneuverable Perching. PhD thesis, Massachusetts Institute of Technology, Boston, June 2010.
- Post-capture detumble trajectory stabilization for robotic active debris removal. Advances in Space Research, 2022. ISSN: 0273-1177. DOI: https://doi.org/10.1016/j.asr.2022.09.033.
- Trajectory Optimization and Following for a Three Degrees of Freedom Overactuated Floating Platform. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Oct 2022.
- The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Transactions on robotics and automation, 9(5):531–543, 1993. ISSN: 1042-296X.
- Evangelos George Papadopoulos. On the dynamics and control of space manipulators. PhD thesis, Massachusetts Institute of Technology, 1990.
- Equations of motion of free-floating spacecraft-manipulator systems: An Engineer’s tutorial. Frontiers Robotics AI, 5(APR):1–24, 2018. ISSN: 22969144. DOI: 10.3389/frobt.2018.00041.
- Thai-Chau Nguyen-Huynh. Adaptive Reactionless Control of a Space Manipulator for Post-Capture of an Uncooperative Tumbling Target. PhD thesis, McGill University, 2013.
- Modern Robotics -Mechanics, Planning, and Control. Cambridge University Press, UK, 2017. ISBN: 0816057451. DOI: 10.1017/9781316661239.
- John T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. Society for Industrial and Applied Mathematics, Philadelphia, 2010. DOI: 10.1137/1.9780898718577.
- Matthew Kelly. An introduction to trajectory optimization: How to do your own direct collocation. SIAM Review, 59(4):849–904, 2017. ISSN: 00361445. DOI: 10.1137/16M1062569.
- SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Review, 47(1):99–131, 2005.
- Russ Tedrake and the Drake Development Team. Drake: Model-based design and verification for robotics. 2019.
- Direct trajectory optimization by a chebyshev pseudospectral method. Journal of Guidance, Control, and Dynamics, 25(1):160–166, 2002.
- Spacecraft trajectory optimization: A review of models, objectives, approaches and solutions. Progress in Aerospace Sciences, 102:76–98, 2018.
- Quaternion based LQR for Free-Floating Robots without Gravity. In 6th CEAS Conference on Guidance, Navigation, and Control, (EuroGNC), Berlin, May 2022. CEAS.
- Dimitri P Bertsekas. Dynamic programming and optimal control: Volume. 1. Athena scientific, Nashua, US, 2012.
- Hassan K. Khalil. Nonlinear Systems. Prentice Hall, Upper Saddle River, N.J, 3rd ed edition, 2002. ISBN: 978-0-13-067389-3.
- Pablo Parrilo. thesis.pdf. PhD thesis, California Institute of Technology, Pasadena, California, 2000. http://www.mit.edu/~parrilo/pubs/files/thesis.pdf.
- A fast sampling method for estimating the domain of attraction. Nonlinear Dynamics, 86(2):823–834, Oct. 2016. ISSN: 0924-090X, 1573-269X. DOI: 10.1007/s11071-016-2926-7.
- Co-optimization of acrobot design and controller for increased certifiable stability, 07 2022. DOI: 10.13140/RG.2.2.36436.07043.
- Werner Krauth. Statistical mechanics: algorithms and computations. Number 13 in Oxford master series in physics. Oxford University Press, Oxford, 2006. ISBN: 978-0-19-851535-7.
- Resolved Motion Rate Control of Space Manipulators with Generalized Jacobian Matrix. IEEE Transactions on Robotics and Automation, 5(3):303–314, 1989. DOI: 10.1109/70.34766.
- Dynamic Air-Bearing Hardware-in-the-Loop Testbed to Experimentally Evaluate Autonomous Spacecraft Proximity Maneuvers. Journal of Spacecraft and Rockets, 54(4):825–839, July 2017. ISSN: 0022-4650, 1533-6794. DOI: 10.2514/1.A33769.
- Additive manufacturing of large structures using free-flying satellites. Frontiers in Space Technologies (2022) 879542. - https://doi.org/10.3389/frspt.2022.879542, Apr 2022. ISSN: 2673-5075. DOI: 10.3389/frspt.2022.879542.
- Spacecraft Thruster Control via Sigma–Delta Modulation. Journal of Guidance, Control, and Dynamics, 40(11):2928–2933, Nov. 2017. ISSN: 0731-5090, 1533-3884. DOI: 10.2514/1.G002986.