Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Digital Diagnostics: The Potential Of Large Language Models In Recognizing Symptoms Of Common Illnesses (2405.06712v1)

Published 9 May 2024 in cs.CL and cs.AI

Abstract: The recent swift development of LLMs like GPT-4, Gemini, and GPT-3.5 offers a transformative opportunity in medicine and healthcare, especially in digital diagnostics. This study evaluates each model diagnostic abilities by interpreting a user symptoms and determining diagnoses that fit well with common illnesses, and it demonstrates how each of these models could significantly increase diagnostic accuracy and efficiency. Through a series of diagnostic prompts based on symptoms from medical databases, GPT-4 demonstrates higher diagnostic accuracy from its deep and complete history of training on medical data. Meanwhile, Gemini performs with high precision as a critical tool in disease triage, demonstrating its potential to be a reliable model when physicians are trying to make high-risk diagnoses. GPT-3.5, though slightly less advanced, is a good tool for medical diagnostics. This study highlights the need to study LLMs for healthcare and clinical practices with more care and attention, ensuring that any system utilizing LLMs promotes patient privacy and complies with health information privacy laws such as HIPAA compliance, as well as the social consequences that affect the varied individuals in complex healthcare contexts. This study marks the start of a larger future effort to study the various ways in which assigning ethical concerns to LLMs task of learning from human biases could unearth new ways to apply AI in complex medical settings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Gaurav Kumar Gupta (16 papers)
  2. Aditi Singh (19 papers)
  3. Sijo Valayakkad Manikandan (1 paper)
  4. Abul Ehtesham (12 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets