Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced Review Detection and Recognition: A Platform-Agnostic Approach with Application to Online Commerce (2405.06704v1)

Published 9 May 2024 in cs.CL and cs.AI

Abstract: Online commerce relies heavily on user generated reviews to provide unbiased information about products that they have not physically seen. The importance of reviews has attracted multiple exploitative online behaviours and requires methods for monitoring and detecting reviews. We present a machine learning methodology for review detection and extraction, and demonstrate that it generalises for use across websites that were not contained in the training data. This method promises to drive applications for automatic detection and evaluation of reviews, regardless of their source. Furthermore, we showcase the versatility of our method by implementing and discussing three key applications for analysing reviews: Sentiment Inconsistency Analysis, which detects and filters out unreliable reviews based on inconsistencies between ratings and comments; Multi-language support, enabling the extraction and translation of reviews from various languages without relying on HTML scraping; and Fake review detection, achieved by integrating a trained NLP model to identify and distinguish between genuine and fake reviews.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. F. Watson and Y. Wu, “The impact of online reviews on the information flows and outcomes of marketing systems,” Journal of Macromarketing, vol. 42, no. 1, pp. 146–164, 2022.
  2. S. Willas. 7 reasons online reviews are essential for your brand. [Online]. Available: https://mention.com/en/blog/online-reviews/
  3. R. Licata. Why online reviews are important for customers & businesses. [Online]. Available: https://terakeet.com/blog/online-reviews/
  4. C. Capoccia. Wonline reviews are the best thing that ever happened to small businesses. [Online]. Available: https://www.forbes.com/sites/forbestechcouncil/2018/04/11/online-reviews-are-the-best-thing-that-ever-happened-to-small-businesses/?sh=7227b25740a0
  5. G. Lackermair, D. Kailer, and K. Kanmaz, “Importance of online product reviews from a consumer’s perspective,” Advances in Economics and Business, vol. 1, pp. 1–5, 07 2013.
  6. H. Choi and S. Leon, “An empirical investigation of online review helpfulness: A big data perspective,” Decision Support Systems, vol. 139, p. 113403, 09 2020.
  7. Y. K. Dwivedi, E. Ismagilova, D. L. Hughes, J. Carlson, R. Filieri, J. Jacobson, V. Jain, H. Karjaluoto, H. Kefi, A. S. Krishen et al., “Setting the future of digital and social media marketing research: Perspectives and research propositions,” International Journal of Information Management, vol. 59, p. 102168, 2021.
  8. J. M. M. Otero, “Fake reviews on online platforms: perspectives from the us, uk and eu legislations,” SN Social Sciences, vol. 1, no. 7, 2021.
  9. M. Walther, T. Jakobi, S. J. Watson, and G. Stevens, “A systematic literature review about the consumers’ side of fake review detection – which cues do consumers use to determine the veracity of online user reviews?” Computers in Human Behavior Reports, vol. 10, p. 100278, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2451958823000118
  10. J. Salminen, C. Kandpal, A. M. Kamel, S. gyo Jung, and B. J. Jansen, “Creating and detecting fake reviews of online products,” Journal of Retailing and Consumer Services, vol. 64, p. 102771, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0969698921003374
  11. S. Balan and P. Ponmuthuramalingam, “Automatic web page logo detection (logo matching using semantic relevance feedback),” in 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), 2016, pp. 1888–1893.
  12. B. Regan. The inside scoop on ecommerce reviews: Why they matter and how to make the most of them. [Online]. Available: https://www.bigcommerce.com.au/blog/online-reviews/
  13. M. Baddeley, “Herding, social influence and economic decision-making: socio-psychological and neuroscientific analyses,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 365, no. 1538, pp. 281–290, 2010.
  14. S. Utz, P. Kerkhof, and J. Van Den Bos, “Consumers rule: How consumer reviews influence perceived trustworthiness of online stores,” Electronic Commerce Research and Applications, vol. 11, no. 1, pp. 49–58, 2012.
  15. C. Wang, T. Liu, Y. Zhu, H. Wang, X. Wang, and S. Zhao, “The influence of consumer perception on purchase intention: Evidence from cross-border e-commerce platforms,” Heliyon, vol. 9, no. 11, 2023.
  16. T. Chen, P. Samaranayake, X. Cen, M. Qi, and Y.-C. Lan, “The impact of online reviews on consumers’ purchasing decisions: Evidence from an eye-tracking study,” Frontiers in Psychology, p. 2723, 2022.
  17. Y. Wu, E. W. Ngai, P. Wu, and C. Wu, “Fake online reviews: Literature review, synthesis, and directions for future research,” Decision Support Systems, vol. 132, p. 113280, 2020.
  18. T. Roelen-Blasberg. How ratings and reviews impact search: A comprehensive guide for seo. [Online]. Available: https://www.mara-solutions.com/post/how-ratings-and-reviews-impact-search-a-comprehensive-guide-for-seo
  19. W. Choi, K. Nam, M. Park, S. Yang, S. Hwang, and H. Oh, “Fake review identification and utility evaluation model using machine learning,” Frontiers in artificial intelligence, vol. 5, p. 1064371, 2023.
  20. N. Deshai and B. Bhaskara Rao, “Unmasking deception: a cnn and adaptive pso approach to detecting fake online reviews,” Soft Computing, pp. 1–22, 2023.
  21. M. Kang, B. Sun, T. Liang, and H.-Y. Mao, “A study on the influence of online reviews of new products on consumers’ purchase decisions: An empirical study on jd. com,” Frontiers in Psychology, vol. 13, p. 983060, 2022.
  22. A. Jishag, V. Rakhesh, S. Mohan, N. Vinayak Varma, V. Shabu, L. S. Nair, and M. Menon, “Automated review analyzing system using sentiment analysis,” in Ambient Communications and Computer Systems: RACCCS-2018.   Springer, 2019, pp. 329–338.
  23. J. Guyt, H. Datta, and J. Boegershausen, “Unlocking the potential of web scraping for retailing research,” Available at SSRN 4701901, 2024.
  24. M. Jezeel. What web scraping can and can’t do for you. [Online]. Available: https://www.blog.datahut.co/post/what-web-scraping-can-and-cant-do-for-you
  25. R. Afonso and J. Rosas, “Development of a smartphone application and chrome extension to detect fake news in english and european portuguese,” IEEE Latin America Transactions, vol. 22, no. 4, pp. 294–303, 2024.
  26. G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLO,” Jan. 2023. [Online]. Available: https://github.com/ultralytics/ultralytics
  27. S. Hoffstaetter, “Python tesseract,” https://github.com/madmaze/pytesseract, 2018.
  28. M. B. Gulfraz, M. Sufyan, M. Mustak, J. Salminen, and D. K. Srivastava, “Understanding the impact of online customers’ shopping experience on online impulsive buying: A study on two leading e-commerce platforms,” Journal of Retailing and Consumer Services, vol. 68, p. 103000, 2022.
  29. D. Tzutalin. (2015) tzutalin/labelimg. [Online]. Available: https://github.com/tzutalin/labelImg
  30. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds.   Cham: Springer International Publishing, 2014, pp. 740–755.
  31. J. Hawkins, “Minvime/minimum viable model estimator,” Software Impacts, vol. 9, 2021.
  32. P. Karmakar, S. W. Teng, G. Lu, and D. Zhang, “A novel fusion approach in the extraction of kernel descriptor with improved effectiveness and efficiency,” Multimedia Tools and Applications, vol. 80, no. 10, pp. 14 545–14 564, 2021.
  33. R. Navigli, S. Conia, and B. Ross, “Biases in large language models: origins, inventory, and discussion,” ACM Journal of Data and Information Quality, vol. 15, no. 2, pp. 1–21, 2023.
  34. W. Zhang, Q. Wang, J. Li, Z. Ma, G. Bhandari, and R. Peng, “What makes deceptive online reviews? a linguistic analysis perspective,” Humanities and Social Sciences Communications, vol. 10, no. 1, pp. 1–14, 2023.
  35. T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s transformers: State-of-the-art natural language processing,” arXiv preprint arXiv:1910.03771, 2019.
  36. M. Alzate, M. Arce-Urriza, and J. Cebollada, “Mining the text of online consumer reviews to analyze brand image and brand positioning,” Journal of Retailing and Consumer Services, vol. 67, p. 102989, 2022.
  37. N. Shuyo, “Language detection library for java,” 2010. [Online]. Available: http://code.google.com/p/language-detection/
  38. S. Han, “Googletrans,” 2020. [Online]. Available: https://github.com/ssut/py-googletrans
  39. A. S. Maiya, “ktrain: A low-code library for augmented machine learning,” The Journal of Machine Learning Research, vol. 23, no. 1, pp. 7070–7075, 2022.
  40. ——, “Onprem.llm,” 2023. [Online]. Available: https://amaiya.github.io/onprem/

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets