Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Optics with Recoiled Free Electrons (2405.06560v1)

Published 10 May 2024 in quant-ph

Abstract: Quantum states of light play a key role in modern quantum science, but creating hybrid quantum light-matter states remains a challenge. A promising basis for the creation of hybrid states is the interaction of free electrons with photons, which has so far been largely implemented without taking into account electron quantum recoil effects. We provide an analytical quantum electrodynamics-based framework for quantum optics with recoiled electrons and introduce a single recoil parameter $\sigma$. With this framework, we show how to generate photon and electron-photon Bell, Greenberger-Horne-Zeilinger (GHZ) and NOON states, coherent states, squeezed vacuum (including bright squeezed vacuum) and twin beams. We analyze the transition between these states and predict a new class of photon and electron-photon quantum states shaped with the photon recoil effect (recoil-induced shaping). These results have wide potential applications including quantum computing and communication with photons and free electrons, and open up a novel avenue for ultrafast electron microscopy and next-generation free-electron sources.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. \bibcommenthead
  2. Scarani, V. et al. The security of practical quantum key distribution. Reviews of Modern Physics 81, 1301–1350 (2009). URL https://link.aps.org/doi/10.1103/RevModPhys.81.1301. Publisher: American Physical Society.
  3. Quantum sensing. Reviews of Modern Physics 89, 035002 (2017). URL https://link.aps.org/doi/10.1103/RevModPhys.89.035002. Publisher: American Physical Society.
  4. Quantum communication. Nature Photonics 1, 165–171 (2007). URL https://www.nature.com/articles/nphoton.2007.22. Publisher: Nature Publishing Group.
  5. Bell’s theorem without inequalities. American Journal of Physics 58, 1131–1143 (1990). URL https://doi.org/10.1119/1.16243.
  6. All-Gaussian Universality and Fault Tolerance with the Gottesman-Kitaev-Preskill Code. Physical Review Letters 123, 200502 (2019). URL https://link.aps.org/doi/10.1103/PhysRevLett.123.200502. Publisher: American Physical Society.
  7. Dahan, R. et al. Creation of Optical Cat and GKP States Using Shaped Free Electrons. Physical Review X 13, 031001 (2023). URL https://link.aps.org/doi/10.1103/PhysRevX.13.031001. Publisher: American Physical Society.
  8. McKenzie, K. et al. Squeezing in the Audio Gravitational-Wave Detection Band. Physical Review Letters 93, 161105 (2004). URL https://link.aps.org/doi/10.1103/PhysRevLett.93.161105. Publisher: American Physical Society.
  9. Grote, H. et al. First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory. Physical Review Letters 110, 181101 (2013). URL https://link.aps.org/doi/10.1103/PhysRevLett.110.181101. Publisher: American Physical Society.
  10. Zhong, H.-S. et al. Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. Physical Review Letters 127, 180502 (2021). URL https://link.aps.org/doi/10.1103/PhysRevLett.127.180502. Publisher: American Physical Society.
  11. Bright squeezed vacuum: Entanglement of macroscopic light beams. Optics Communications 337, 27–43 (2015). URL https://www.sciencedirect.com/science/article/pii/S0030401814006695.
  12. Quantum spatial dynamics of high-gain parametric down-conversion accompanied by cascaded up-conversion. Physical Review A 104, 013702 (2021). URL https://link.aps.org/doi/10.1103/PhysRevA.104.013702. Publisher: American Physical Society.
  13. Cascaded frequency up-conversion of bright squeezed vacuum: spectral and correlation properties. Optics Letters 47, 766–769 (2022). URL https://opg.optica.org/ol/abstract.cfm?uri=ol-47-4-766. Publisher: Optica Publishing Group.
  14. Spasibko, K. Y. et al. Multiphoton Effects Enhanced due to Ultrafast Photon-Number Fluctuations. Physical Review Letters 119, 223603 (2017). URL https://link.aps.org/doi/10.1103/PhysRevLett.119.223603. Publisher: American Physical Society.
  15. Heimerl, J. et al. Multiphoton electron emission with non-classical light. Nature Physics 1–6 (2024). URL https://www.nature.com/articles/s41567-024-02472-6. Publisher: Nature Publishing Group.
  16. Tzur, M. E. et al. Generation of squeezed high-order harmonics (2023). URL http://arxiv.org/abs/2311.11257. ArXiv:2311.11257 [physics, physics:quant-ph].
  17. Gorlach, A. et al. High-harmonic generation driven by quantum light. Nature Physics 19, 1689–1696 (2023). URL https://www.nature.com/articles/s41567-023-02127-y. Number: 11 Publisher: Nature Publishing Group.
  18. Rasputnyi, A. et al. High harmonic generation by bright squeezed vacuum (2024). 2403.15337.
  19. Assouline, A. et al. Emission and coherent control of Levitons in graphene. Science 382, 1260–1264 (2023). URL https://www.science.org/doi/full/10.1126/science.adf9887. Publisher: American Association for the Advancement of Science.
  20. Electron-Photon Quantum State Heralding Using Photonic Integrated Circuits. PRX Quantum 4, 020351 (2023). URL https://link.aps.org/doi/10.1103/PRXQuantum.4.020351. Publisher: American Physical Society.
  21. Activating cavity by electrons. Communications Physics 6, 1–9 (2023). URL https://www.nature.com/articles/s42005-023-01227-8. Number: 1 Publisher: Nature Publishing Group.
  22. Karnieli, A. et al. Universal and ultrafast quantum computation based on free-electron-polariton blockade (2023). URL http://arxiv.org/abs/2303.13275. ArXiv:2303.13275 [quant-ph].
  23. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009). URL https://www.nature.com/articles/nature08662. Number: 7275 Publisher: Nature Publishing Group.
  24. Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015). URL https://www.nature.com/articles/nature14463. Number: 7551 Publisher: Nature Publishing Group.
  25. England, R. J. et al. Dielectric laser accelerators. Reviews of Modern Physics 86, 1337–1389 (2014). URL https://link.aps.org/doi/10.1103/RevModPhys.86.1337. Publisher: American Physical Society.
  26. Adiv, Y. et al. Quantum Nature of Dielectric Laser Accelerators. Physical Review X 11, 041042 (2021). URL https://link.aps.org/doi/10.1103/PhysRevX.11.041042. Publisher: American Physical Society.
  27. Shiloh, R. et al. Miniature light-driven nanophotonic electron acceleration and control. Advances in Optics and Photonics 14, 862–932 (2022). URL https://opg.optica.org/aop/abstract.cfm?uri=aop-14-4-862. Publisher: Optica Publishing Group.
  28. Few-electron correlations after ultrafast photoemission from nanometric needle tips. Nature Physics 19, 1402–1409 (2023). URL https://www.nature.com/articles/s41567-023-02059-7. Number: 10 Publisher: Nature Publishing Group.
  29. Haindl, R. et al. Coulomb-correlated electron number states in a transmission electron microscope beam. Nature Physics 19, 1410–1417 (2023). URL https://www.nature.com/articles/s41567-023-02067-7. Number: 10 Publisher: Nature Publishing Group.
  30. Kfir, O. Entanglements of Electrons and Cavity Photons in the Strong-Coupling Regime. Physical Review Letters 123, 103602 (2019). URL https://link.aps.org/doi/10.1103/PhysRevLett.123.103602. Publisher: American Physical Society.
  31. Kfir, O. et al. Controlling free electrons with optical whispering-gallery modes. Nature 582, 46–49 (2020). URL https://www.nature.com/articles/s41586-020-2320-y. Number: 7810 Publisher: Nature Publishing Group.
  32. Dahan, R. et al. Imprinting the quantum statistics of photons on free electrons. Science 373, eabj7128 (2021). URL https://www.science.org/doi/full/10.1126/science.abj7128. Publisher: American Association for the Advancement of Science.
  33. Feist, A. et al. Cavity-mediated electron-photon pairs. Science 377, 777–780 (2022). URL https://www.science.org/doi/full/10.1126/science.abo5037. Publisher: American Association for the Advancement of Science.
  34. Fishman, T. et al. Imaging the field inside nanophotonic accelerators. Nature Communications 14, 3687 (2023). URL https://www.nature.com/articles/s41467-023-38857-z. Number: 1 Publisher: Nature Publishing Group.
  35. Gaida, J. H. et al. Lorentz microscopy of optical fields. Nature Communications 14, 6545 (2023). URL https://www.nature.com/articles/s41467-023-42054-3. Number: 1 Publisher: Nature Publishing Group.
  36. Kruit, P. et al. Designs for a quantum electron microscope. Ultramicroscopy 164, 31–45 (2016). URL https://www.sciencedirect.com/science/article/pii/S0304399116300146.
  37. Bucher, T. et al. Coherently amplified ultrafast imaging in a free-electron interferometer (2023). URL http://arxiv.org/abs/2305.04877. ArXiv:2305.04877 [physics, physics:quant-ph].
  38. Chlouba, T. et al. Coherent nanophotonic electron accelerator. Nature 622, 476–480 (2023). URL https://www.nature.com/articles/s41586-023-06602-7. Number: 7983 Publisher: Nature Publishing Group.
  39. Quantum-Coherent Light-Electron Interaction in a Scanning Electron Microscope. Physical Review Letters 128, 235301 (2022). URL https://link.aps.org/doi/10.1103/PhysRevLett.128.235301. Publisher: American Physical Society.
  40. Tunable Single-Photon Generation in a Scanning Electron Microscope based on Silicon Photonics (2023). URL https://ieeexplore.ieee.org/abstract/document/10232356. ISSN: 2833-1052.
  41. Talebi, N. Electron-light interactions beyond the adiabatic approximation: recoil engineering and spectral interferometry. Advances in Physics: X 3, 1499438 (2018). URL https://doi.org/10.1080/23746149.2018.1499438. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/23746149.2018.1499438.
  42. Huang, S. et al. Quantum recoil in free-electron interactions with atomic lattices. Nature Photonics 17, 224–230 (2023). URL https://www.nature.com/articles/s41566-022-01132-6. Number: 3 Publisher: Nature Publishing Group.
  43. Elastic Recoil Imprinted on Free-electron Radiation (2023). URL http://arxiv.org/abs/2312.04383. ArXiv:2312.04383 [physics, physics:quant-ph].
  44. Jaynes-Cummings interaction between low-energy free electrons and cavity photons. Science Advances 9, eadh2425 (2023). URL https://www.science.org/doi/full/10.1126/sciadv.adh2425. Publisher: American Association for the Advancement of Science.
  45. Self-Trapping of Slow Electrons in the Energy Domain. Physical Review Letters 132, 035001 (2024). URL https://link.aps.org/doi/10.1103/PhysRevLett.132.035001. Publisher: American Physical Society.
  46. Strong coupling and single-photon nonlinearity in free-electron quantum optics (2024). URL http://arxiv.org/abs/2403.13071. ArXiv:2403.13071 [quant-ph].
  47. Cerenkov, P. A. Visible emission of clean liquids by action of γ𝛾\gammaitalic_γ radiation. Dok Akad Nauk SSSR 2, 451–454 (1934).
  48. Coherent radiation of fast electrons in a medium. Dokl. Akad. Nauk SSSR 14, 107–112 (1937).
  49. Ginzburg, V. Quantum theory of radiation of electron uniformly moving in medium. Zh. Eksp. Teor. Fiz 10, 589 (1940).
  50. Tamm, I. E. General Characteristics of Vavilov-Cherenkov Radiation: The theory of radiation from systems moving with superlight velocities has uses in plasma physics. Science 131, 206–210 (1960). URL https://www.science.org/doi/10.1126/science.131.3395.206.
  51. Ginzburg, V. L. Radiation by uniformly moving sources (vavilov–cherenkov effect, transition radiation, and other phenomena). Physics-Uspekhi 39, 973 (1996).
  52. Adiv, Y. et al. Observation of 2D Cherenkov Radiation. Physical Review X 13, 011002 (2023). URL https://link.aps.org/doi/10.1103/PhysRevX.13.011002. Publisher: American Physical Society.
  53. First observation of Smith-Purcell radiation from relativistic electrons. Physical Review Letters 69, 1761–1764 (1992). URL https://link.aps.org/doi/10.1103/PhysRevLett.69.1761. Publisher: American Physical Society.
  54. Remez, R. et al. Spectral and spatial shaping of Smith-Purcell radiation. Physical Review A 96, 061801 (2017). URL https://link.aps.org/doi/10.1103/PhysRevA.96.061801. Publisher: American Physical Society.
  55. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New Journal of Physics 12, 123028 (2010). URL https://dx.doi.org/10.1088/1367-2630/12/12/123028.
  56. High-performance semiconductor quantum-dot single-photon sources. Nature Nanotechnology 12, 1026–1039 (2017). URL https://www.nature.com/articles/nnano.2017.218. Number: 11 Publisher: Nature Publishing Group.
  57. Probing quantum optical excitations with fast electrons. Optica 6, 1524–1534 (2019). URL https://opg.optica.org/optica/abstract.cfm?uri=optica-6-12-1524. Publisher: Optica Publishing Group.
  58. Quantum Optics (Cambridge University Press, Cambridge, 1997). URL https://www.cambridge.org/core/books/quantum-optics/08DC53888452CBC6CDC0FD8A1A1A4DD7.
  59. Klyshko, D. N. Photons and Nonlinear Optics (Routledge, New York, 2017).
  60. Enhanced Electro-optic Sampling with Quantum Probes. Physical Review Letters 127, 270504 (2021). URL https://link.aps.org/doi/10.1103/PhysRevLett.127.270504.
  61. Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nature Physics 14, 121–125 (2018). URL https://www.nature.com/articles/nphys4282. Number: 2 Publisher: Nature Publishing Group.
  62. Schönenberger, N. et al. Generation and Characterization of Attosecond Microbunched Electron Pulse Trains via Dielectric Laser Acceleration. Physical Review Letters 123, 264803 (2019). URL https://link.aps.org/doi/10.1103/PhysRevLett.123.264803. Publisher: American Physical Society.
  63. Black, D. S. et al. Net Acceleration and Direct Measurement of Attosecond Electron Pulses in a Silicon Dielectric Laser Accelerator. Physical Review Letters 123, 264802 (2019). URL https://link.aps.org/doi/10.1103/PhysRevLett.123.264802. Publisher: American Physical Society.
  64. Optical-cavity mode squeezing by free electrons. Nanophotonics 11, 4659–4670 (2022). URL https://www.degruyter.com/document/doi/10.1515/nanoph-2022-0481/html. Publisher: De Gruyter.
  65. Henke, J.-W. et al. Integrated photonics enables continuous-beam electron phase modulation. Nature 600, 653–658 (2021). URL https://www.nature.com/articles/s41586-021-04197-5. Number: 7890 Publisher: Nature Publishing Group.
  66. Photons and Atoms - Introduction to Quantum Electrodynamics (John Wiley & Sons, Ltd, 1997). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527618422.ch5. Publication Title: Photons and Atoms - Introduction to Quantum Electrodynamics ADS Bibcode: 1997phat.book…..C.
  67. Sharapova, P. R. et al. Properties of bright squeezed vacuum at increasing brightness. Physical Review Research 2, 013371 (2020). URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.013371. Publisher: American Physical Society.
  68. Magnus, W. On the exponential solution of differential equations for a linear operator. Communications on Pure and Applied Mathematics 7, 649–673 (1954). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160070404. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160070404.
  69. Levine, H. et al. High-Fidelity Control and Entanglement of Rydberg-Atom Qubits. Physical Review Letters 121, 123603 (2018). URL https://link.aps.org/doi/10.1103/PhysRevLett.121.123603.
  70. Lvovsky, A. I. Squeezed Light, 121–163 (John Wiley & Sons, Ltd, 2015). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119009719.ch5. Section: 5 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119009719.ch5.
  71. Low-energy Free-electron Rabi oscillation and its applications (2023). URL http://arxiv.org/abs/2304.12174. ArXiv:2304.12174 [physics, physics:quant-ph].
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com