Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-myopic GOSPA-driven Gaussian Bernoulli Sensor Management (2405.05815v2)

Published 9 May 2024 in eess.SY and cs.SY

Abstract: In this paper, we propose an algorithm for non-myopic sensor management for Bernoulli filtering, i.e., when there may be at most one target present in the scene. The algorithm is based on selecting the action that solves a BeLLMan-type minimisation problem, whose cost function is the mean square generalised optimal sub-pattern assignment (GOSPA) error, over a future time window. We also propose an implementation of the sensor management algorithm based on an upper bound of the mean square GOSPA error and a Gaussian single-target posterior. Finally, we develop a Monte Carlo tree search algorithm to find an approximate optimal action within a given computational budget. The benefits of the proposed approach are demonstrated via simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.