Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of errors in a CNOT between surface code patches (2405.05337v3)

Published 8 May 2024 in quant-ph

Abstract: As current experiments already realize small quantum circuits on error corrected qubits, it is important to fully understand the effect of physical errors on the logical error channels of these fault-tolerant circuits. Here, we investigate a lattice-surgery-based CNOT operation between two surface code patches under phenomenological error models. (i) For two-qubit logical Pauli measurements -- the elementary building block of the CNOT -- we optimize the number of stabilizer measurement rounds, usually taken equal to $d$, the size (code distance) of each patch. We find that the optimal number can be greater or smaller than $d$, depending on the rate of physical and readout errors, and the separation between the code patches. (ii) We fully characterize the two-qubit logical error channel of the lattice-surgery-based CNOT. We find a symmetry of the CNOT protocol, that results in a symmetry of the logical error channel. We also find that correlations between X and Z errors on the logical level are suppressed under minimum weight decoding.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. A.Yu. Kitaev. “Fault-tolerant quantum computation by anyons”. Annals of Physics 303, 2–30 (2003).
  2. “Surface codes: Towards practical large-scale quantum computation”. Physical Review A86 (2012).
  3. Rajeev Acharya et al. “Suppressing quantum errors by scaling a surface code logical qubit”. Nature 614, 676 – 681 (2022).
  4. “A quantum processor based on coherent transport of entangled atom arrays”. Nature 604, 451–456 (2022).
  5. “Logical-qubit operations in an error-detecting surface code”. Nature Physics 18, 80–86 (2021).
  6. “Realizing repeated quantum error correction in a distance-three surface code”. Nature 605, 669–674 (2022).
  7. Youwei Zhao et al. “Realization of an error-correcting surface code with superconducting qubits”. Physical Review Letters129 (2022).
  8. Dolev Bluvstein et al. “Logical quantum processor based on reconfigurable atom arrays”. Nature (2023).
  9. “Poking holes and cutting corners to achieve Clifford gates with the surface code”. Physical Review X7 (2017).
  10. P.W. Shor. “Fault-tolerant quantum computation”. In Proceedings of 37th Conference on Foundations of Computer Science. Pages 56–65.  (1996).
  11. “Charge detection enables free-electron quantum computation”. Physical Review Letters 93, 020501 (2004).
  12. “Surface code quantum computing by lattice surgery”. New Journal of Physics 14, 123011 (2012).
  13. Daniel Litinski. “A game of surface codes: Large-scale quantum computing with lattice surgery”. Quantum 3, 128 (2019).
  14. “Universal quantum computation with ideal Clifford gates and noisy ancillas”. Physical Review A71 (2005).
  15. “Encoding a magic state with beyond break-even fidelity”. Nature 625, 259–263 (2024).
  16. “Roads towards fault-tolerant universal quantum computation”. Nature 549, 172–179 (2017).
  17. Benjamin J. Brown. “A fault-tolerant non-Clifford gate for the surface code in two dimensions”. Science Advances 6, eaay4929 (2020).
  18. “Universal quantum computation in the surface code using non-Abelian islands”. Physical Review A100 (2019).
  19. Héctor Bombín. “Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer codes”. New Journal of Physics 17, 083002 (2015).
  20. “Fault tolerant non-Clifford state preparation for arbitrary rotations” (2023). arXiv:2303.17380.
  21. “Cost of universality: A comparative study of the overhead of state distillation and code switching with color codes”. PRX Quantum2 (2021).
  22. “Lattice surgery with a twist: Simplifying Clifford gates of surface codes”. Quantum 2, 62 (2018).
  23. H. Bombin and M. A. Martin-Delgado. “Optimal resources for topological two-dimensional stabilizer codes: Comparative study”. Physical Review A76 (2007).
  24. “Topological quantum memory”. Journal of Mathematical Physics 43, 4452–4505 (2002).
  25. Austin G. Fowler. “Minimum weight perfect matching of fault-tolerant topological quantum error correction in average o⁢(1)𝑜1o(1)italic_o ( 1 ) parallel time” (2014). arXiv:1307.1740.
  26. Jack Edmonds. “Paths, trees, and flowers”. Canadian Journal of Mathematics 17, 449–467 (1965).
  27. Oscar Higgott. “Pymatching: A python package for decoding quantum codes with minimum-weight perfect matching”. ACM Transactions on Quantum Computing 3, 1–16 (2022).
  28. “Sparse blossom: correcting a million errors per core second with minimum-weight matching” (2023). arXiv:2303.15933.
  29. https://doi.org/10.5281/zenodo.11079788.
  30. “Logical blocks for fault-tolerant topological quantum computation”. PRX Quantum4 (2023).
  31. Craig Gidney. “Inplace access to the surface code y basis”. Quantum 8, 1310 (2024).
  32. “Error-corrected Hadamard gate simulated at the circuit level” (2023). arXiv:2312.11605.
  33. “Universal quantum computing with twist-free and temporally encoded lattice surgery”. PRX Quantum3 (2022).
  34. “Circuit-level protocol and analysis for twist-based lattice surgery”. Physical Review Research4 (2022).
  35. “The XZZX surface code”. Nature Communications12 (2021).
  36. Daniel Litinski and Felix von Oppen. “Braiding by Majorana tracking and long-range CNOT gates with color codes”. Physical Review B96 (2017).
  37. “Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory”. Annals of Physics 303, 31–58 (2003).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com