Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint semi-supervised and contrastive learning enables zero-shot domain-adaptation and multi-domain segmentation (2405.05336v1)

Published 8 May 2024 in eess.IV, cs.AI, and cs.CV

Abstract: Despite their effectiveness, current deep learning models face challenges with images coming from different domains with varying appearance and content. We introduce SegCLR, a versatile framework designed to segment volumetric images across different domains, employing supervised and contrastive learning simultaneously to effectively learn from both labeled and unlabeled data. We demonstrate the superior performance of SegCLR through a comprehensive evaluation involving three diverse clinical datasets of retinal fluid segmentation in 3D Optical Coherence Tomography (OCT), various network configurations, and verification across 10 different network initializations. In an unsupervised domain adaptation context, SegCLR achieves results on par with a supervised upper-bound model trained on the intended target domain. Notably, we discover that the segmentation performance of SegCLR framework is marginally impacted by the abundance of unlabeled data from the target domain, thereby we also propose an effective zero-shot domain adaptation extension of SegCLR, eliminating the need for any target domain information. This shows that our proposed addition of contrastive loss in standard supervised training for segmentation leads to superior models, inherently more generalizable to both in- and out-of-domain test data. We additionally propose a pragmatic solution for SegCLR deployment in realistic scenarios with multiple domains containing labeled data. Accordingly, our framework pushes the boundaries of deep-learning based segmentation in multi-domain applications, regardless of data availability - labeled, unlabeled, or nonexistent.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Investigative Ophthalmology & Visual Sci, vol. 57, no. 9, 2016.
  2. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Int Conf on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2015, pp. 234–241.
  3. U. Schmidt-Erfurth and S. M. Waldstein, “A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration,” Progress in Retinal and Eye Research, vol. 50, pp. 1–24, 2016.
  4. J. N. Sahni, A. Maunz, F. Arcadu, Y.-P. Zhang_Schaerer, Y. Li, T. Albrecht, A. Thalhammer, and F. Benmansour, “A machine learning approach to predict response to anti-vegf treatment in patients with neovascular age-related macular degeneration using sd-oct,” Investigative Ophthalmology & Visual Science, vol. 60, no. 11, pp. PB094–PB094, 2019.
  5. J. D. Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev et al., “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nature Medicine, vol. 24, no. 9, pp. 1342–1350, 2018.
  6. H. Bogunovic, F. Venhuizen, S. Klimscha, S. Apostolopoulos, A. Bab-Hadiashar et al., “RETOUCH: The retinal OCT fluid detection and segmentation benchmark and challenge,” IEEE Transactions on Medical Imaging, vol. 38, no. 8, pp. 1858–1874, 2019.
  7. T. Schlegl, S. M. Waldstein, H. Bogunovic, F. Endstraßer, A. Sadeghipour, A.-M. Philip, D. Podkowinski, B. S. Gerendas, G. Langs, and U. Schmidt-Erfurth, “Fully automated detection and quantification of macular fluid in OCT using deep learning,” Ophthalmology, vol. 125, no. 4, pp. 549–558, 2018.
  8. M. Wang and W. Deng, “Deep visual domain adaptation: A survey,” Neurocomputing, vol. 312, pp. 135–153, 2018.
  9. M. Ren, N. Dey, J. Fishbaugh, and G. Gerig, “Segmentation-Renormalized deep feature modulation for unpaired image harmonization,” IEEE Transactions on Medical Imaging, vol. 40, no. 6, pp. 1519–1530, 2021.
  10. K.-C. Peng, Z. Wu, and J. Ernst, “Zero-shot deep domain adaptation,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 764–781.
  11. M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin, “Emerging properties in self-supervised vision transformers,” in IEEE Int Conf on Computer Vision (ICCV), 2021, pp. 9650–9660.
  12. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in Int Conf on Machine Learning (ICML), 2020, pp. 1597–1607.
  13. T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton, “Big self-supervised models are strong semi-supervised learners,” in Advances in Neural Information Processing Systems (NeurIPS), 2020, pp. 22 243–22 255.
  14. X. Chen and K. He, “Exploring simple siamese representation learning,” in IEEE Conf on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 15 750–15 758.
  15. J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar et al., “Bootstrap your own latent-a new approach to self-supervised learning,” in Advances in Neural Information Processing Systems (NeurIPS), vol. 33, 2020, pp. 21 271–21 284.
  16. K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation learning,” in IEEE Conf on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 9729–9738.
  17. P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learning,” in Advances in Neural Information Processing Systems (NeurIPS), vol. 33, 2020, pp. 18 661–18 673.
  18. A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.
  19. J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a” siamese” time delay neural network,” Advances in neural information processing systems, vol. 6, 1993.
  20. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in IEEE Conf on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 248–255.
  21. K. Chaitanya, E. Erdil, N. Karani, and E. Konukoglu, “Contrastive learning of global and local features for medical image segmentation with limited annotations,” in Advances in Neural Inf Proc Systems (NeurIPS), vol. 33, 2020, pp. 12 546–12 558.
  22. Y. Chen, C. Zhang, L. Liu, C. Feng, C. Dong, Y. Luo, and X. Wan, “USCL: Pretraining deep ultrasound image diagnosis model through video contrastive representation learning,” in Int Conf on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2021, pp. 627–637.
  23. A. Gomariz, H. Lu, Y. Y. Li, T. Albrecht, A. Maunz, F. Benmansour, A. M. Valcarcel, J. Luu, D. Ferrara, and O. Goksel, “Unsupervised domain adaptation with contrastive learning for oct segmentation,” in Int Conf on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022, pp. 351–361.
  24. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Int Conf on Learning Representations (ICLR), 2015.
  25. Y. Wu and K. He, “Group normalization,” in European Conference on Computer Vision (ECCV), 2018, pp. 3–19.
  26. O. Maier, B. H. Menze, J. von der Gablentz, L. Häni, M. P. Heinrich, M. Liebrand, S. Winzeck, A. Basit, P. Bentley, L. Chen et al., “Isles 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral mri,” Medical image analysis, vol. 35, pp. 250–269, 2017.
  27. A. Maunz, F. Benmansour, Y. Li, T. Albrecht, Y.-P. Zhang, F. Arcadu, Y. Zheng, S. Madhusudhan, and J. Sahni, “Accuracy of a machine-learning algorithm for detecting and classifying choroidal neovascularization on spectral-domain optical coherence tomography,” Journal of Personalized Medicine, vol. 11, no. 6, p. 524, 2021.
  28. A. Gomariz, H. Lu, Y. Li, T. Albrecht, A. Maunz, F. Benmansour, J. Luu, O. Goksel, and D. Ferrara, “A unified deep learning approach for oct segmentation from different devices and retinal diseases,” Investigative Ophthalmology & Visual Science, vol. 63, no. 7, pp. 2053–F0042, 2022.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com