Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-Time Motion Detection Using Dynamic Mode Decomposition (2405.05057v1)

Published 8 May 2024 in cs.CV

Abstract: Dynamic Mode Decomposition (DMD) is a numerical method that seeks to fit timeseries data to a linear dynamical system. In doing so, DMD decomposes dynamic data into spatially coherent modes that evolve in time according to exponential growth/decay or with a fixed frequency of oscillation. A prolific application of DMD has been to video, where one interprets the high-dimensional pixel space evolving through time as the video plays. In this work, we propose a simple and interpretable motion detection algorithm for streaming video data rooted in DMD. Our method leverages the fact that there exists a correspondence between the evolution of important video features, such as foreground motion, and the eigenvalues of the matrix which results from applying DMD to segments of video. We apply the method to a database of test videos which emulate security footage under varying realistic conditions. Effectiveness is analyzed using receiver operating characteristic curves, while we use cross-validation to optimize the threshold parameter that identifies movement.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. SIAM Journal on Applied Dynamical Systems 17(1), 380–416 (2018)
  2. Proceedings of the Royal Society A 479(2271), 20220576 (2023)
  3. IEEE Photonics Journal 9(6), 1–13 (2017)
  4. In: Handbook of mathematical models in computer vision, pp. 79–96. Springer (2006)
  5. Physical Review E 102(2), 022204 (2020)
  6. Journal of neuroscience methods 258, 1–15 (2016)
  7. SIAM Review 64(2), 229–340 (2022)
  8. EURASIP Journal on Advances in Signal Processing 2005, 1–11 (2005)
  9. Journal of Fluid Mechanics 955, A21 (2023)
  10. Physical Review E 99(6), 063311 (2019)
  11. Journal of Real-Time Image Processing 16, 1479–1492 (2019)
  12. In: 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), vol. 1, pp. 15–20. IEEE (2022)
  13. arXiv preprint arXiv:1404.7592 (2014)
  14. Computer Vision and Image Understanding 224, 103560 (2022)
  15. Computer Vision and Image Understanding 199, 103022 (2020)
  16. Theoretical and Computational Fluid Dynamics 31, 349–368 (2017)
  17. Springer (2021)
  18. Journal of Mathematical Imaging and Vision 64(4), 364–378 (2022)
  19. Society for Industrial and Applied Mathematics (2016)
  20. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 921–929. IEEE (2015)
  21. SIAM Journal on Applied Dynamical Systems 22(1), 235–268 (2023)
  22. Quantitative Finance 16(11), 1643–1655 (2016)
  23. Journal of Fluids and Structures 94, 102886 (2020)
  24. SIAM Journal on Scientific Computing 45(4), A1690–A1710 (2023)
  25. In: 2012 19th IEEE International Conference on Image Processing, pp. 2381–2384. IEEE (2012)
  26. Journal of Neural Engineering 20(1), 016011 (2023)
  27. SIAM Journal on Applied Dynamical Systems 15(1), 142–161 (2016)
  28. In: TENCON 2019-2019 IEEE Region 10 Conference (TENCON), pp. 745–750. IEEE (2019)
  29. Journal of fluid mechanics 641, 115–127 (2009)
  30. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics 656, 5–28 (2010)
  31. Schmid, P.J.: Dynamic mode decomposition and its variants. Annual Review of Fluid Mechanics 54, 225–254 (2022)
  32. Theoretical and computational fluid dynamics 25, 249–259 (2011)
  33. Journal of Neural Engineering 17(3), 036009 (2020)
  34. Journal of Computational Science 25, 351–366 (2018)
  35. Signal, Image and Video Processing 14, 167–175 (2020)
  36. Multimedia Tools and Applications 80(10), 15937–15958 (2021)
  37. In: Smart Systems and IoT: Innovations in Computing: Proceeding of SSIC 2019, pp. 663–679. Springer (2020)
  38. Pattern Recognition Letters 29(16), 2145–2155 (2008)
  39. Journal of Computational Dynamics 1(2), 391–421 (2014). DOI 10.3934/jcd.2014.1.391
  40. URL backgroundmodelschallenge.eu
  41. In: 2009 7th Asian Control conference, pp. 1594–1599. IEEE (2009)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com