Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computation of some dispersive equations through their iterated linearisation (2405.04958v1)

Published 8 May 2024 in math.NA, cs.NA, and physics.comp-ph

Abstract: It is often the case that, while the numerical solution of the non-linear dispersive equation $\mathrm{i}\partial_t u(t)=\mathcal{H}(u(t),t)u(t)$ represents a formidable challenge, it is fairly easy and cheap to solve closely related linear equations of the form $\mathrm{i}\partial_t u(t)=\mathcal{H}_1(t)u(t)+\widetilde{\mathcal H}_2(t)u(t)$, where $\mathcal{H}_1(t)+\mathcal{H}_2(v,t)=\mathcal{H}(v,t)$. In that case we advocate an iterative linearisation procedure that involves fixed-point iteration of the latter equation to solve the former. A typical case is when the original problem is a nonlinear Schr\"odinger or Gross--Pitaevskii equation, while the `easy' equation is linear Schr\"odinger with time-dependent potential. We analyse in detail the iterative scheme and its practical implementation, prove that each iteration increases the order, derive upper bounds on the speed of convergence and discuss in the case of nonlinear Schr\"odinger equation with cubic potential the preservation of structural features of the underlying equation: the $\mathrm{L}_2$ norm, momentum and Hamiltonian energy. A key ingredient in our approach is the use of the Magnus expansion in conjunction with Hermite quadratures, which allows effective solutions of the linearised but non-autonomous equations in an iterative fashion. The resulting Magnus--Hermite methods can be combined with a wide range of numerical approximations to the matrix exponential. The paper concludes with a number of numerical experiments, demonstrating the power of the proposed approach.

Summary

We haven't generated a summary for this paper yet.